Цифровая трансформация для директоров и собственников. Часть 1. Погружение - Джимшер Бухутьевич Челидзе 11 стр.


Впервые концепцию цифрового двойника описал в 2002 году Майкл Гривс, профессор Мичиганского университета. В книге «Происхождение цифровых двойников» он разложил их на три основные части:

физический продукт в реальном пространстве;

виртуальный продукт в виртуальном пространстве;

данные и информация, которые объединяют виртуальный и физический продукт.

Сам же цифровой двойник может быть:

прототипом  аналогом реального объекта в виртуальном мире, который содержит все данные для производства оригинала;

экземпляром  историей эксплуатации и данными обо всех характеристиках физического объекта, включая 3D-модель, экземпляр действует параллельно с оригиналом;

агрегированным двойником  комбинированной системой из цифрового двойника и реального объекта, которыми можно управлять и обмениваться данными из единого информационного пространства.

Наибольшее развитие технология приобрела благодаря развитию искусственного интеллекта и удешевлению интернета вещей. Цифровые двойники стали получать «чистые» большие данные о поведении реальных объектов, появилась возможность предсказывать отказы оборудования задолго до происшествий. И хотя последний тезис довольно спорный, это направление активно развивается.

В результате цифровой двойник является синергией 3D-технологий, в том числе дополненной или виртуальной реальности, искусственного интеллекта, интернета вещей. Это синтез нескольких технологий и фундаментальных наук.

Сами по себе цифровые двойники можно разделить на 4 уровня.

Двойник отдельного узла агрегата моделирует работу наиболее критичного узла агрегата. Это может быть конкретный подшипник, щётки электродвигателя, обмотка статора или электродвигатель насоса. В общем, тот узел, который имеет наибольший риск отказа.

Двойник агрегата моделирует работу всего устройства. Например, газотурбинная установка или весь насос.

Двойник производственной системы моделирует несколько активов, связанных воедино: производственную линию или весь завод.

Двойник процесса  здесь речь идёт уже не о «железках», а о моделировании процессов. Например, при внедрении MES- или APS-систем. О них поговорим в следующей главе.

Какие же задачи позволяет решить технология цифрового двойника?

Становится возможным уменьшить количество изменений и затрат уже на стадии проектирования оборудования или завода, что позволяет существенно сократить издержки на остальных этапах жизненного цикла. А также это позволяет избежать критических ошибок, изменение которых бывает невозможно на стадии эксплуатации.


Рост стоимости исправления ошибок от старта до закрытия проекта


Сравнение возможности и стоимости исправления ошибок


Благодаря сбору, визуализации и анализу данных появляется возможность принимать превентивные меры до наступления серьёзных аварий и повреждения оборудования.

Оптимизировать затраты на техническое обслуживание с одновременным повышением общей надёжности. Возможность предсказывать отказы позволяет ремонтировать оборудование по фактическому состоянию, а не по «календарю». При этом не нужно держать большое количество оборудования на складе, то есть замораживать оборотные средства.


Использование ЦД в сочетании с большими данными и нейросетями позволяет сначала пройти путь от отчетов и мониторинга к системам предиктивной аналитики и предотвращению аварий


Выстроить наиболее эффективные рабочие режимы и минимизировать издержки на производство. Чем дольше будет накопление данных и глубже аналитика, тем эффективнее пойдёт оптимизация.

При этом очень важно не путать виды прогнозирования. В последнее время, работая с рынком различных IT-решений, я постоянно вижу путаницу в понятиях предиктивной аналитики и машинного выявления отклонений в работе оборудования. То есть, используя машинное выявление отклонений, говорят о внедрении нового, предиктивного подхода к организации обслуживания.

С одной стороны, в обоих случаях действительно работают нейросети. При машинном выявлении аномалий нейросети тоже находят отклонения, что позволяет провести обслуживание до серьёзной поломки и заменить только износившийся элемент.

Но давайте внимательнее посмотрим на определение предиктивной аналитики.

Предикативная (или предиктивная, прогнозная) аналитика  это прогнозирование, основанное на исторических данных.

То есть это возможность предсказывать отказы оборудования до того, как отклонение наступило. Когда эксплуатационные показатели ещё в норме, но уже начинают формироваться тенденции к отклонениям.

Если перевести на совсем бытовой уровень, то выявление аномалий  это когда у вас меняется давление и вас об этом предупреждают прежде, чем заболит голова или начнутся проблемы с сердцем. А предиктивная аналитика  это когда всё ещё нормально, но у вас изменился режим питания, качество сна или что-то ещё, соответственно, в организме запущены процессы, которые впоследствии приведут к росту давления.

И получается, основная разница  в глубине погружения, наличии компетенций и горизонте предсказания. Выявление аномалий  это краткосрочное предсказание, чтобы не довести до критической ситуации. Для этого не нужно изучать исторические данные на большом промежутке времени, например за несколько лет.

А полноценная предиктивная аналитика  это долгосрочное предсказание. Вы получаете больше времени на принятие решения и выработку мер: запланировать закупку нового оборудования или запчастей, вызвать ремонтную бригаду по более низкой цене или изменить режим работы оборудования, чтобы не допустить возникновения отклонений.

Так думаю я, но, возможно, есть и альтернативные мнения, особенно у маркетологов.

Самым главным ограничением на данный момент я считаю сложность и дороговизну технологии. Создавать математические модели долго и дорого, а риск ошибок высок. Необходимо совместить технические знания об объекте, практический опыт, знания в моделировании и визуализации, соблюдение стандартов в реальных объектах. Далеко не для всех технических решений это оправданно, как и далеко не каждая компания обладает всеми компетенциями.

Поэтому я полагаю, что для производств целесообразно начинать с анализа аварий, определять критичные компоненты активов и создавать именно их модели. То есть использовать подход из теории ограничений системы.

Это позволит, во-первых, минимизировать риск ошибок. Во-вторых, войти в это направление с меньшими затратами и получить эффект, на который можно будет опираться в дальнейшем. В-третьих, накопить экспертизу по работе с данными, принятию решений на их основе и «усложнению» моделей. Наличие собственных компетенций в работе с данными  одно из ключевых условий успешной цифровизации.

Стоит помнить и о том, что пока это новая технология. И по тому же циклу Гартнер, она должна пройти «долину разочарования». А впоследствии, когда цифровые компетенции станут более привычными, а нейросети более массовыми, мы станем использовать цифровых двойников в полной мере.

Облака, онлайн-аналитика и удалённое управление

Концепция цифровой трансформации подразумевает активное использование облаков, онлайн-аналитики и возможностей удалённого управления.

Национальный институт стандартов и технологий США (NIST) выделил следующие характеристики облаков:

самообслуживание по требованию (self service on demand)  потребитель сам определяет свои потребности: скорость доступа, производительность «железа», его доступность, объём необходимой памяти;

доступ к ресурсам с любого устройства, подключённого к сети  абсолютно неважно, с какого компьютера или смартфона заходит пользователь, главное, чтобы оно было подключено к сети интернет;

объединение ресурсов (resource pooling)  поставщики комплектуют «железо» для быстрой балансировки между потребителями, то есть потребитель обозначает, что ему надо, но распределение между конкретными машинами берёт на себя поставщик;

гибкость  потребитель может в любой момент изменить набор необходимых услуг и их объём без лишних коммуникаций и согласований с поставщиком;

автоматический учёт потребления услуг.

Но какие преимущества облака в итоге дают бизнесу?

Возможность не «замораживать» ресурсы вложениями в основные средства и будущие расходы (для ремонта, обновления и модернизации). Это упрощает бухучёт и работу с налогами, позволяет направлять ресурсы на развитие.

Назад Дальше