Считается, что первым в истории игровым стереофильмом была «Сила любви» именно так называется немая короткометражка, которую в 1922 году снял американец Гарри Фейролл. Для того времени это было новшество: фильм был снят на двойную пленку, изображение на которой было окрашено в красный и зеленый цвета. Чтобы увидеть объем, зрители надевали специальные анаглифические очки. В результате пред ними было однотонное черно-белое, но объемное изображение.
«Отцы» кинематографа братья Люмьер тоже не остались в стороне от «объемного» кино и в 1934 году создали анаглифический ремейк своей короткометражки «Прибытие поезда».
В начале 20-х годов прошлого века инженеры-изобретатели Лоуренс Хаммонд и Уильям Кэссиди добились объемного изображения с помощью более сложного «затворного» метода, еще сильнее опирающегося на инерционность человеческого зрения. Его суть была в том, что кинозал был оборудован двумя проекторами, которые поочерёдно показывали кадры, предназначенные для левого и правого глаза. В это же время специальные затворы, встроенные в подлокотники зрительских кресел, поочерёдно открывались и закрывались. Однако из-за сложности этого метода широкого распространения он не получил в подобном формате был снят только один фильм, и он был показан в единственном кинотеатре, оборудованном этой системой.
В 1932 году были изобретены и выпущены в широкую продажу первые поляризационные фильтры фирмы Polaroid. Использование поляризационных фильтров обозначило необходимость модернизировать проекторы и вообще все оборудование кинозалов. Теперь изображения сразу с двух кинопленок, содержащих визуальную информацию для левого и правого глаза, должны были быть строго синхронизированы иначе из-за фильтров зритель бы вместо объема видел неясную «шевеленку». Также потребовалось заменить киноэкраны прежние матовые не отражали поляризованный свет, и потому их стали изготавливать из отражающих материалов, например, с посеребренной поверхностью.
В 1952 году вышел первый цветной стереоскопический фильм Bwana Devil, который демонстрировался с помощью двойного проектора. Из-за того что такой проектор мог вместить пленку только на час показа, кинотеатры устраивали антракты. То ли специально, то ли случайно, но паузы делались в самых интересных местах фильма, и зритель волей-неволей возвращался в зал, чтобы узнать, чем все закончилось. Следующий стереофильм вышел в 1953 году им стал «Дом восковых фигур». Помимо того что он был стереофильмом, то есть с «объемной» картинкой, он стал еще и первым фильмом, озвученным по технологии стерео, то есть с «объемным» звуком.
Режиссеры в погоне за прибылью и популярностью своих картин старались снимать все более «экстремальные» 3D-ленты, после просмотра которых у зрителей отмечались головокружения и приступы мигрени. Вслед за падением репутации стереокино стала падать и его популярность.
В конце 1960-х возобновились эксперименты с технологией показа «объемных» фильмов.
Самую настоящую революцию в развитии стереокинематографа совершил в начале 2000-х Джеймс Кэмерон. Он вместе с киноинженерами разрабатывал на основе самой передовой на тот момент модели камеры Sony HDC-F950.
Гений советского кинематографа Сергей Эйзенштейн еще в 1920-х годах предсказал, что стереокинематограф рано или поздно станет главным вектором развития киноиндустрии. В 1940 году был снят и показан первый стереофильм «Выходной день в Москве» Александра Птушко для его просмотра зрителям предлагались специальные поляризационные очки.
К исследованиям стереокино вернулись только в начале 1960-х. В 197080-е годы было снято довольно много фильмов «Всадник на золотом коне» (1980), «Ученик лекаря» (1983). Этот опыт особо пристально изучали канадцы будущие создатели 3D-системы IMAX.
В 2000 году состоялась премьера первого в истории специально созданного для IMAX-кинотеатров короткометражного мультфильма «Старик и море» его снял российский режиссер Александр Петров, впоследствии получивший за него премию «Оскар».
В 2004 году вышел полнометражный стереомультфильм Роберта Земекиса «Полярный экспресс». Именно тогда киностудии разглядели в формате 3D огромный потенциал для получения прибыли. За последние два-три года в мире вышло более 70 фильмов, снятых с применением технологии IMAX. Число IMAX-лент будет увеличиваться ровно до тех пор, пока киноиндустрия не изобретет что-то новое.
Просмотр 3D-фильмов как в кинотеатре, так и с экрана 3D-телевизора в 3D-очках затруднен для людей, имеющих дефекты зрения и вынужденных носить очки с диоптриями. 3D-очки не всегда можно надеть на или под диоптрические, при этом в любом случае создается дополнительная нагрузка на зрение из-за бликов, возникающих между линзами, и на переносицу из-за большого веса конструкции из двух пар очков.
Просмотр 3D-фильмов как в кинотеатре, так и с экрана 3D-телевизора в 3D-очках затруднен для людей, имеющих дефекты зрения и вынужденных носить очки с диоптриями. 3D-очки не всегда можно надеть на или под диоптрические, при этом в любом случае создается дополнительная нагрузка на зрение из-за бликов, возникающих между линзами, и на переносицу из-за большого веса конструкции из двух пар очков.
Очки-«хамелеоны»
«Хамелеонами» называют фотохромные очки, которые могут изменять свою светопропускаемость в зависимости от уровня освещения. В темноте они светлеют, а при солнечном свете становятся темнее. Потемнение «хамелеонов» в остеклённых помещениях отсутствует, так как силикатное стекло практически не пропускает ультрафиолет.
Принцип работыВ фотохромных линзах присутствуют молекулы с фотохромной структурой. Они входят в состав материала и изменяют свою пространственную структуру под воздействием ультрафиолета. Иными словами, линзы снижают яркость солнечного света, так как они темнеют и становятся похожими на обычные солнцезащитные очки. При отсутствии ультрафиолетового излучения вновь меняется пространственная структура молекул, но уже в обратном порядке. Из-за этого линзы светлеют. Если они оснащены диоптриями, то их можно носить как обычные очки для коррекции близорукости или дальнозоркости. В помещении они превращаются в корректирующую оптику, а при солнечном свете выполняют еще и функции солнцезащитных стекол.
В основе любой модели, очки-хамелеоны имеют фотохромные линзы. Линзы создаются из полимерных, органических и силикатных материалов с добавлением или покрытием галогенидами. К галогенидам относятся молекулярное серебро и медь. Их ещё называют фотохромными агентами, а линзы с использованием галогенидов, называют фотохромными линзами.
Линзы хамелеон из полимеров можно разделить на три вида:
когда фотохромные агенты были добавлены в мономер до отвердевания;
когда фотохромные агенты наносят на мономер после отвердевания;
когда на готовую полимерную линзу наносят органический фотохромный агент, нанесённый на плёночное покрытие.
Для стеклянных линз характерно нанесение фотохромных агентов между слоями линзы. Это, как правило, минеральные фотоагенты на основе молекул серебра и меди. Второй способ заключается в нанесении оксазина (фульгида нафтопирана) в виде плёночного покрытия.
Изображение будет более точным, если просветляющее покрытие нанесено на линзу. Такое покрытие делает изображение более контрастным и правильным для восприятия глазом.
Если фотохромный агент внесён в мономер в процессе отвердевания линзы, он очень долговечен и просветляющие и затемняющие свойства будут хорошими все время эксплуатации.
Современные фотохромыИзначально такие очки были не очень удобными, так как их светопропускаемость изменялась не только из-за ультрафиолета, но и из-за температуры воздуха. На холоде очки быстро темнели, а в очень жаркие дни они не могли помочь достичь максимального затемнения. Фотохромные линзы, произведенные по современным инновационным технологиям, практически не зависят от температурного фактора. При любом перепаде температур они не теряют своей светочувствительности и не запотевают.
Природные фотохромы:
содалит (хакманит) месторождения Илимоссак в Гренландии меняет цвет от фиолетового (на свежем разломе) до бледно-желтого, бледно-зеленого или бесцветного (после инсоляции). Механизм заключается в изменении электронного состояния соседствующих атомов серы. Длина волны максимума поглощения света меняется с 528 на 400 нм;
минерал тугтупит способен менять цвет от белого или бледно-розового до ярко-розового.
Для фотохромной оптики создаются линзы из органического (пластикового) или неорганического материала (минерального стекла). Когда линзы делают из минерального сырья, фотохром распределяется в стекле, когда оно находится в жидком состоянии. Из-за этого очки могут темнеть неравномерно. Фотохромные линзы из пластика производятся тремя способами:
распределением фотохрома в массе органического материала;
пропитыванием;
нанесением фотохромного покрытия.
Такие линзы темнеют на солнце равномерно всего за несколько секунд. Однако они быстрее портятся, то есть утрачивают свои функции по изменению светопропускаемости. Минеральные линзы более надежны, но и они должны заменяться каждые 35 лет. За это время полностью пропадет их способность к затемнению.