Расплетая радугу. Наука, заблуждения и потребность изумляться - Ричард Докинз 13 стр.


Тому, кто способен понимать спектральный код, достаточно одного беглого взгляда, чтобы увидеть, что за объект представляет собой та или иная звезда: ее цвет, размер, яркость, ее прошлое и будущее, ее особенности, а также сходства и различия с Солнцем и со звездами всех прочих категорий.

Расплетая звездный свет при помощи спектроскопов, мы узнали, что звезды это ядерные горнила, в которых из водорода, составляющего основную долю их массы, выплавляется гелий. Затем ядра гелия, сталкиваясь друг с другом, запускают дальнейший каскад образования примесей, в ходе которого получаются почти все остальные химические элементы и куются атомы среднего размера, в конечном итоге составляющие наши с вами тела.

Расплетя радугу, Ньютон вымостил дорогу к сделанному в XIX веке открытию, что та радуга, которую мы видим,  это лишь узкая часть полного спектра электромагнитных волн. Видимый свет охватывает диапазон с длинами волн от 0,4 миллионной части метра (фиолетовый) до 0,7 миллионной части метра (насыщенный красный). Лучи с длиной волны чуть больше, чем у красного света, называются инфракрасными; мы воспринимаем их как невидимое тепловое излучение, а некоторые змеи и управляемые ракеты используют, чтобы прицеливаться в своих жертв. Лучи с длиной волны чуть меньше, чем у фиолетового, называются ультрафиолетовыми; они обжигают нашу кожу и могут вызывать рак. Длины волн радиоизлучения намного больше, чем у красного света,  они измеряются сантиметрами, метрами и даже тысячами метров. Между радиоволнами и инфракрасным излучением на спектре располагаются микроволны, которые мы используем в радарах, а также для быстрого приготовления пищи. Еще меньше, чем у ультрафиолета, длины волн рентгеновского излучения, помогающего нам видеть кости внутри тела. А самые маленькие длины волн у гамма-излучения: они исчисляются триллионными долями метра. В узком диапазоне значений длин волн, именуемом светом, нет ничего особенного, за исключением того, что мы способны его видеть. У насекомых вся эта полоска видимого света сдвинута вдоль спектра. Ультрафиолет для них различимый цвет («пчелиный пурпур»), а к красному они слепы (и могли бы назвать его «инфражелтым»). Излучение на всем протяжении этого широкого спектра можно расплести точно так же, как радугу, хотя конкретные инструменты, используемые на разных его участках, будут различными например, радиоприемник вместо призмы.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Цвета, которые мы в действительности ощущаем, субъективное восприятие красноты или синевы это произвольные ярлыки, привязываемые нашим мозгом к различным длинам электромагнитных волн. В ощущении красного нет ничего «длинного». Знание того, как выглядят синий и красный цвета, никоим образом не помогает нам запомнить, чья длина волны больше. Мне то и дело приходится заглядывать для этого в справочник, хотя в то же время я никогда не забываю, что звуки, издаваемые сопрано, имеют меньшую длину волны, чем у баса. Головному мозгу нужны удобные внутренние маркеры для различных частей физической радуги. Никто не знает, насколько мое восприятие красного совпадает с вашим, однако мы легко сойдемся на том, что свет, который я называю красным, вы тоже называете красным и что, если физик измерит его длину волны, она окажется большой. Мне субъективно кажется (и вам, вероятно, тоже), что фиолетовый цвет краснее синего, даже несмотря на то, что в спектре он расположен от красного дальше. Кажущийся красноватый оттенок у фиолетового обусловлен особенностями нашей нервной системы, а не физическими характеристиками спектра.

Незабвенный доктор Дулиттл из книги Хью Лофтинга, улетев на Луну, был поражен головокружительной игрой новых красок, так же отличавшихся от известных нам цветов, как синий от красного. Но мы можем быть уверены, что такое невозможно даже в фантазиях. Оттенки, которые встретят путешественника в любом незнакомом мире, будут порождением его собственного мозга, прилетевшего вместе с ним с родной планеты[28].

Теперь мы довольно подробно знаем, каким образом глаз сообщает мозгу о длине волны света. Это происходит посредством трехцветного кода вроде того, что используется в цветном телевидении. Человеческая сетчатка содержит четыре типа светочувствительных клеток: три разновидности «колбочек» и «палочки». Все четыре устроены по единому принципу и, несомненно, имеют общее происхождение. Когда рассуждаешь о клетках, очень легко забыть, насколько каждая отдельная клетка сложно устроена. И сложностью своей она во многом обязана виртуозно упакованным внутренним мембранам. Внутри каждой крохотной палочки или колбочки содержится огромная кипа мембран, уложенных наподобие высокой стопки книг. Каждая «книга» многократно прошита насквозь длинной и тонкой молекулой белка под названием «родопсин». Как и многие белки, он обладает ферментативными свойствами катализирует определенную химическую реакцию, обеспечивая молекулам реагентов пространство, имеющее подходящую для взаимодействия форму.

Именно трехмерная структура молекулы фермента делает его катализатором, служа точной хотя и в меру гибкой литейной формой, идеально подогнанной для того, чтобы другие молекулы попадали в нее и встречались друг с другом. В противном случае им пришлось бы уповать исключительно на случайное столкновение вот почему ферменты так поразительно ускоряют химические реакции. Точность и отлаженность этого механизма один из главных феноменов, благодаря которым возможно существование жизни, но тут возникает одна проблема. Сворачиваясь, молекула фермента нередко может принимать различные формы, а нужна обычно только какая-то одна. Многие миллионы лет естественный отбор занимался не в последнюю очередь тем, что искал «решительные» и «упертые» молекулы, «предпочитающие» сворачиваться строго определенным образом. Ведь молекулы, которые могут принимать альтернативные формы, бывают причиной трагедий. Коровье бешенство, почесуха овец и их человеческие аналоги куру и болезнь Крейтцфельдта Якоба вызываются прионами, особыми белками, имеющими две различные формы. Как правило, эти белки сворачиваются в одну из двух возможных конфигураций и в таком виде выполняют свою полезную работу. Но иногда они принимают другую, альтернативную форму. И тогда случается страшное. Присутствие одной-единственной нестандартной молекулы белка провоцирует остальные молекулы тоже перейти в новую «секту». Эпидемия белков неправильной формы распространяется по организму в соответствии с принципом домино. Одна такая аномальная молекула может попасть в другой организм и запустить там новую цепную реакцию. Результат смерть от того, что мозг становится пористым, словно губка, так как белок, принявший альтернативную форму, не способен выполнять свои обычные функции.

Когда прионы были открыты, это вызвало некоторое замешательство, поскольку они распространяются подобно самовоспроизводящимся вирусам, будучи при этом белками,  а белки считаются неспособными к самовоспроизведению. Любой учебник по биологии скажет вам, что изготовление своих собственных копий эксклюзивная привилегия полинуклеотидов (ДНК и РНК). Однако прионы можно назвать самовоспроизводящимися только в том специфическом смысле, что одна деформированная, «бракованная» молекула «подстрекает» своих уже существующих соседок принять ее конфигурацию.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Когда прионы были открыты, это вызвало некоторое замешательство, поскольку они распространяются подобно самовоспроизводящимся вирусам, будучи при этом белками,  а белки считаются неспособными к самовоспроизведению. Любой учебник по биологии скажет вам, что изготовление своих собственных копий эксклюзивная привилегия полинуклеотидов (ДНК и РНК). Однако прионы можно назвать самовоспроизводящимися только в том специфическом смысле, что одна деформированная, «бракованная» молекула «подстрекает» своих уже существующих соседок принять ее конфигурацию.

В иных случаях ферменты, которые умеют переходить из одной формы в другую, используют эту способность во благо. Ведь переключаемость это, в конце концов, основное свойство транзисторов, диодов и прочих высокоскоростных электронных вентилей, производящих компьютерные логические операции: «ЕСЛИ», «НЕ», «И», «ИЛИ» и им подобные. Существуют так называемые аллостерические белки, которые переключаются из одного состояния в другое на манер транзисторов: не «привлеченные» соседями к распространению инфекции, как это происходит у прионов, а только ЕСЛИ возникают некие приемлемые биологические условия И НЕ при определенных иных условиях. Родопсин один из таких белков-«транзисторов», приносящих пользу своим умением переходить из одной альтернативной конфигурации в другую. Он, подобно фотоэлементу, «переключается» тогда, когда на него попадает свет. А после непродолжительного периода регенерации снова принимает исходную форму. В одном из двух своих возможных состояний он является мощным катализатором, в другом же нет. И когда свет вызывает его переключение в активную форму, это запускает специфическую цепную реакцию и стремительный круговорот молекул. Свет как будто открывает высоконапорный кран.

Конечным результатом получающегося химического каскада оказывается поток импульсов, передающихся в головной мозг через последовательность нервных клеток, каждая из которых представляет собой тонкую длинную трубку. Эти нервные импульсы тоже не что иное, как химические преобразования с высокой скоростью катализа. Они распространяются вдоль тонких и длинных трубок, как искры по дорожкам из пороха. Каждая такая «искорка» дискретна и изолирована от остальных, поэтому они доходят до противоположного конца трубки в виде кратких отчетливых донесений. Частота, с которой эти нервные импульсы поступают а их могут быть сотни в секунду,  представляет собой (в данном случае) закодированную информацию об интенсивности света, падающего на палочку или на колбочку. Пока речь идет об отдельной нервной клетке, сильная стимуляция от слабой отличается так же, как огонь скорострельного пулемета от прерывистой стрельбы из винтовки.

До сих пор все сказанное относилось как к палочкам, так и к каждому из трех типов колбочек. Поговорим теперь о различиях. Колбочки реагируют только на яркий свет. Палочки чувствительны к слабому освещению и необходимы, чтобы видеть ночью. Они равномерно разбросаны по всей сетчатке и нигде не образуют заметных скоплений, а потому плохо подходят для разглядывания мелких деталей. Используя палочки, нельзя читать. Читаете вы колбочками, которые чрезвычайно плотно собраны на одном особом участке сетчатки, называемом центральной ямкой. Разумеется, чем плотнее их укладка, тем мельче подробности, которые можно различить.

Палочки не участвуют в цветовом зрении, потому что они не отличаются друг от друга по восприимчивости к свету с различными длинами волн. Все они наиболее чувствительны к желтому свету, находящемуся в центральной части видимого спектра, и слабее реагируют на крайние значения длин волн. Это не означает, что они любой свет представляют мозгу как желтый. Такое высказывание вообще не имеет смысла. Все, что нервная клетка передает в головной мозг,  это импульсы и больше ничего. Если палочка возбуждается часто, это может означать как большое количество красного или синего света, так и несколько меньшее количество желтого. Единственный способ, которым мозг может здесь избежать двусмысленности,  это сравнить одновременные сигналы от клеток разного типа, обладающих различной цветовой чувствительностью.

Вот тут-то и выходят на сцену три типа колбочек. Каждый из них обладает родопсином своего особого сорта. Все они реагируют на свет с любой длиной волны, но одни наиболее чувствительны к синему, другие к зеленому, а третьи к красному. Сравнивая интенсивность возбуждения каждого из трех типов колбочек (по сути, вычитая их сигналы друг из друга), нервная система может установить длину волны света, падающего на соответствующий участок сетчатки. В отличие от зрения при помощи одних только палочек, здесь мозг не путает тусклый свет одного оттенка с ярким другого. Поскольку он получает сообщения одновременно от разных типов колбочек, ему удается вычислить истинный цвет световых лучей.

Назад Дальше