Пособие по изучению иммунного ответа. Патофизиология TLR и её влияние на механизмы развития патогенеза заболеваний иммунной системы - Никита Александрович Кривушкин


Пособие по изучению иммунного ответа

Патофизиология TLR и её влияние на механизмы развития патогенеза заболеваний иммунной системы


Никита Александрович Кривушкин

Слово к читателю

© Никита Александрович Кривушкин, 2017


Дорогие настоящие, а может быть после прочтения и будущие коллеги: студенты, врачи разных специальностей, коих нет числа, доктора наук и просто люди взявшие в руки эту книгу. После прочтения многое что тут написано может показаться непонятным, а может и вовсе неясным, но моя убедительная просьба к Вам будет не пугаться огромного наплыва информации. Ведь все мы-это одна единая машина, призванная встать на защиту здоровья людей- их физического, психического и социального благополучия. И мы должны отдавать себе ясный отчет что без получения новых знаний мы не продвинемся в понимании лечения болезней: лучше двигаться с заданной целью вперед, чем стоять и уж тем более бесмысленно пятится ползком назад. Мне сложно сказать что это: настольная книга, «краткий очерк» по описанной проблеме, длинная брошюра. Назову это по-простому-национальное руководство по иммунологии. Надеюсь, Вы проведете время с толком за чтением данной книги.

Пособие по изучению иммунного ответа


Роль триггерного рецептора, экспрессируемого на миелоидных клетках, в активации врожденного иммунитета

Исследование патофизиологии и корригации механизмов развития инфекционных и нефинфекционных патологий, в связи функциональной активности триггерного рецептора.Role of Triggering Receptor Expressed on Myeloid Cells in the Activation of Innate Immunity

The innate immune system plays a key role in triggering a systemic inflammatory response (SIR). The triggering receptor expressed on myeloid cells (TREM51), which is located on neutrophils and monocytes, is involved in SIR, by regulating the effector mechanisms of innate immunity. Hyperproduction of proinflammatory cytokines is a pathogenetic component of the hyperergic phase of acute systemic inflammation. The simultaneous activation of Toll5like receptors and TREM51 increases the production of cytokines manifold. This is compensatory and adaptive, however, resulting in damage to organs and tissues during excessive production of cytokines.

Список условных обозначений и ключевые слова:

AKT  протеинкиназа В (Activation of Akt/protein kinase B);

AРQ1  активирующий протеинQ1 (Activator proteinQ1);

CD  кластер дифференцировки (Cluster of differentiation);

DAP12  ДНК-активирующий белок молекулярной массой 12 кДа (DNAXQactivating protein of molecular mass 12 kilodaltons);

GMQCSF  гранулоцитарно-макрофагальный колонестимулирующий фактор (Granulocyte macrophage colonystimulating factor);

HMGBQ1  высокомобильный белок группы ВQ1 (Highmobility group protein BQ1);

ICAM  молекула межклеточной адгезии (InterQCellular Adhesion Molecule);

IFN β  интерферон β (Interferon β);

IL  интерлейкин (Interleukin);

IRAKQ4  ILQ1 рецептор асоциированная киназа (ILQ 1RQassociated kinasesQ4);

IRF3  регулирующий интерферон фактор Q-3 (Interferon regulatory factor 3);

ITAM  активирующий мотив иммунорецептора на основе тирозина (immunoreceptor tyrosineQbased activation motif);

LPS  липополисахариды (Lipopolysacharide);

MyD88  белок миелоидной дифференцировки первичного генного ответа (Myeloid differentiation primary response protein 88);

NF-kB  ядерный фактор (Nuclear factor kB);

PGE2  простагландин GE2;

PI3K  Фосфатидилинозит киназа (phosphoinositideQ3 kinase);

PLСQγ  фосфолипаза СQγ;

PRR  паттерн распознающие рецепторы;

RIP1  взаимодействующий с рецептором белок 1 (ReceptorQinteracting protein 1);

TIRQ домен  Toll QIL1 рецепторный домен (toll Qinterleukin

1 receptor);

TLR  Toll Qlike рецептор (TollQlike receptor);

TNFα  фактор некроза опухоли α (Tumor necrosis factor alpha);

TRAF6  ассоциированный с рецептором фактора некроза опухоли фактор Q6 (TNFQreceptorQassociated factor 6);

TREMQ1  триггерный рецептор, экспрессируемый на миелоидных клетках (Тriggering receptor expressed on myeloid cells Q1);

TRIF  TIRQ доменсодержащий адаптор, индуцирующий IFNQγ (TIR domainQcontaining adaptorQinducing IFNQγ);

МАРК  митоген активируемые протеинкиназы (MitogenQactivated protein kinase)

МНС II класса  главный комплекс гистосовместимости II класса (Major Histocompatibility Complex II);

ЦОГ  циклооксигеназа

Ведущее значение иммунологических нарушений заключено в системной воспалительной реакции (СВР) и обусловлено патофизиологическими изменениями в организме.

Факторы воздействия патогенного фактора индуцируются в организме за несколько минут или часов, и иммунная защита обеспечивается в первую очередь механизмами врождённого иммунитета. Сам по себе механизм представлен комплексной системой различных по строению и функционированию анатомо-физизиологических структур. В распознавание чужеродных структур (патогенов, ЛПС, пептидогликанов, липопептидов, флагеллинов и прочих элементов) особую и главенствующую роль играют PAMPs (патоген- ассоциированные молекулярные паттерны) через наследственно закодированные рецепторы PRRs (паттерн- распознающие рецепторы).

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Среди PRRs центральное место занимают Toll- like рецепторы (TLR), которые управляют целым рядом эффекторных функций (хемотаксис, фагоцитоз, респираторный взрыв, дегрануляция нейтрофилов, синтез эффекторных и регуляторных молекул), а также активируют и регулируют адаптивный иммунный ответ (адаптивная/ приобретенная иммунная система), необходимый (-ая) для узнавания более сложных высокоорганизованных изменяющихся молекулярных структур (белков). В процессе формирования и реализации функций клеток врожденной иммунной системы (дендритные клетки, макрофаги, нейтрофилы, тучные клетки, эозинофилы и др.), происходит изменение их поверхностных структур, активация захвата АТ, и изменение эффекторных механизмов. И вследствие этого, происходит обеспечение контроля иммунного гомеостаза: полная реализация эффекторных реакций врождённой иммунной системы и индукция приобретённого иммунитета.

Среди PAMPs выделяют:

MAMPs (микробно- ассоциированные молекулярные паттерны), преимущественно- рецепторы флагеллина (липополисахариды, манноза, пептидогликаны, липопротеины). Установлена зависимость распознавания флагеллина от рецепторного гена FLS2. В результате взаимодействия флагеллина и продукта гена FLS2- трансмембранная рецептподобная протеинкиназа, происходит активация каскада митогенактивируемых протеинкиназ и как итог- индукция комплекса защитных реакций в виде иммунного распознавания;

DAMPs (ассоциированные с повреждением молекулярные паттерны)  молекулярные фрагменты, способные инициировать неинфекционный воспалительный ответ на неинфекционный возбудитель. При повреждении тканей генерируются следующие структуры DAMPs: S100 белок (участвует во внутриклеточной и внеклеточной регуляции: клеточный рост и дифференциация, транскрипция, прогрессия клеточного цикла, организация клеточных мембран и динамика цитоскелета, защита от оксидативного повреждения клетки, секреция, фософолирование). Его повышенная концентрация в крови может свидетельствовать о образовании и развитии в организме меланомы, активно продуцирующей S100 и массивная гибель нейронов и как последствие- высвобождение белка S100 в общий кровоток. Таким образом, ECLIA- электрохемилюминнсцентный анализ- позволяет диагностировать рак кожи и заболевания ЦНС (травмы ГМ, ОНМК, нейдегенерация, болезнь Крейтцфельда- Якоба и др.) Белки теплового шока (HSP): поддержание структуры стероидных рецепторов и факторов транскипции, принимает участие в сворачивании и разворачивании белков, тем самым, обеспечиваю клетке нечувствительность к нагреванию, а именно их транскрипционный фактор, регулирующий экспрессию гена Hsp70, который является фактором канцрогенеза. Помимо этого, ингибирование HSP позволяет бороться против некоторых видов рака.

TLRs, о которых мы говорили раньше, способны идентифицировать и связываться с обеими видами паттернов. Сами по себе TLRs представлены как трансмембранные интегральные белки и между своими представителями имеют сходное строение. Структура молекулы представлена из нескольких содержательных компонент: поверхностная зона- N-концевая область аминокислотной последовательности из 1925 участков, обогащённых лейцином (функция заключается в связывании лиганда). Далее- переходный участок, отвечающий за прикрепление рецептора к клеточной мембране, содержащий в себе преимущественно цистеин. Внутренняя дистальная часть рецептора представлена TIR доменом, имеющий сходное строение с семейством цитокинов IL-1.

В зависимости от локализации TLRs в клетке выделяют рецепторы, расположенные на цитоплозматической мембране и на мембранах внутриклеточных органелл- лизосом, эндосом, аппарат Гольджи; лигандами самих рецепторов являются поверхностные структуры микроорганизмов- липопротеин, липополисахариды, флагеллин, зимозан.



Ниже будут представлены все собранные сведения о TLR в виде проведенных исследований за 20162017 гг.

TLR-1

TLR-1- мембранный белок, распознающий патоген-связанные молекулярные структуры грам- положительных бактерий: пептидогликаны и липопептиды. Способен образовывать комплекс с TLR-2. Присутствует на всех лейкоцитах; обладает самой высокой экспрессией среди членов своей группы.

Чтобы проверить общие и редкие ТЛР варианты, участвующие в предрасположенности или резистентности к инфицированию микобактериями туберкулеза мы проанализировали экзоны генов, кодирующих ТЛР 1, 2, 4, и переходник молекулы TIRAP в более чем 4500 случаев туберкулеза (ТБ). Проведенный анализ позволил определить 109 вариантов с возможными функциональными воздействиями, в том числе 101 не синонимичный вариант. Анализ ассоциации дал значительный результат: 533 афроамериканца подтвердили защитный эффект и вызывает обмен аминокислоты из гистидина на лейцин в позиции 305.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Чтобы проверить общие и редкие ТЛР варианты, участвующие в предрасположенности или резистентности к инфицированию микобактериями туберкулеза мы проанализировали экзоны генов, кодирующих ТЛР 1, 2, 4, и переходник молекулы TIRAP в более чем 4500 случаев туберкулеза (ТБ). Проведенный анализ позволил определить 109 вариантов с возможными функциональными воздействиями, в том числе 101 не синонимичный вариант. Анализ ассоциации дал значительный результат: 533 афроамериканца подтвердили защитный эффект и вызывает обмен аминокислоты из гистидина на лейцин в позиции 305.

Поэтому наблюдаемый эффект может быть обусловлен структурными изменениями TLR-1 молекулы, позволяющие связать эти микобактериальные лиганды, которая преимущественно может вызывать защитный иммунный ответ. Это подтверждается анализом БЦЖ-стимулированных периферических мононуклеарных клеток, проявляет повышенный индукции провоспалительного цитокина ИФН-γ у носителей мутантного TLR1 rs3923647 ТТ генотипом, по сравнению с ИФН-γ уровней лиц с АТ и АА генотипов.



IFN-y expression in M. bovis BCG stimulated cultured PBMCs.

Туберкулез (ТБ), заболевание, вызываемое микобактериями туберкулеза (МТБ) инфекцией, до сих пор остается глобальной проблемой общественного здравоохранения. Восприимчивость к туберкулезу очень сильно варьируется в инфицированных, так и микобактериальных атаках на врожденную иммунную систему, вероятно, влияет на ход заболевания и его исход. Данное исследование описывает однонуклеотидный полиморфизм toll-подобных рецепторов TLR-1 ген, функционально меняет врожденный иммунный ответ.

Дальше