Системно-динамические модели позволили увязать воедино многие сферы функционирования человеческого общества. Так, в рамках концепции "устойчивого развития" в 1995 г. группой американских ученых была создана модель "США на пороге XXI-го века", которая моделирует развитие США с учетом экономических, демографических, экологических, социально-политических и технологических факторов.
Аналогичные модели при поддержке Института Тысячелетия и Всемирного банка были созданы и создаются в настоящее время во многих странах мира (Таиланд, Тунис, Китай, Малави, Грузия, Армения и другие). Например, весной 1997 г. были завершены обобщенные системно-динамические модели для изучения динамики макроэкономических показателей Грузии и Армении, а в марте 1997 г. на проходившем в Токио Международном Форуме по Глобальному Моделированию был представлен доклад о возможном будущем для Бангладеш, Туниса и США, составленный на основе системно-динамических моделей, разработанных для данных стран. Все это было бы невозможным без использования современных информационных технологий и информационного анализа.
Поэтому большинство зарубежных моделей, используемых для анализа сложных проблем и процессов, созданы и создаются в настоящее время на основе специальных сред разработки имитационных моделей. В настоящий момент известны такие наиболее распространенные среды разработки имитационных моделей как STELLA (Ithink), DYNAMO, VENSIM, POWERSIM. Они позволяют не только быстро создавать имитационные модели при помощи простых визуальных инструментов, но и проводить анализ работы созданных моделей и использовать данные модели для оценки воздействия управленческих решений на протекание сложных процессов в моделируемых системах.
Что же касается развития системного анализа и системно-динамического направления в РФ, то здесь следует отметить, что системные исследования активно стали развиваться в бывшем СССР в 70-80-е годы нашего столетия. Например, в ЦЭМИ АН СССР в 70-х годах была разработана эконометрическая модель экономики США, предназначенная для среднесрочного прогнозирования; в СО АН СССР был разработан ряд эконометрических моделей (например, С-106 и МОПЕК), моделирующих экономику различных стран в период с окончания второй мировой войны; в МГУ им. М.В. Ломоносова разрабатывались имитационные модели экономики СССР; в ЛГУ были построены модели управления системной образования, в вычислительном центре АН СССР в начале 80-х годов исследовательской группой под руководством академика Н.Н. Моисеева была создана имитационная модель глобальных экологических изменений.
В настоящее время работы в направлении имитационного моделирования ведутся во многих учебных и научных учреждениях.
Однако большая часть исследований проводилась в рамках системного анализа, а системно-динамическим исследованиям отводилась второстепенная роль. Тем не менее, в данном направлении работы велись и ведутся как по созданию системно-динамических имитационных моделей, так и по разработке отечественных сред разработки имитационных моделей. Так, в МИУ (ГАУ) им. С. Орджоникидзе на основе DYNAMO была разработана среда для разработки имитационных моделей ИМИТАК 32, при помощи которой были созданы региональные модели сельского хозяйства. В ЦЭМИ были созданы и использовались для имитационных моделей такие языки программирования, как GPSS, PLIS и SIMULA.
В настоящее время работы в направлении имитационного моделирования ведутся во многих учебных и научных учреждениях.
Однако большая часть исследований проводилась в рамках системного анализа, а системно-динамическим исследованиям отводилась второстепенная роль. Тем не менее, в данном направлении работы велись и ведутся как по созданию системно-динамических имитационных моделей, так и по разработке отечественных сред разработки имитационных моделей. Так, в МИУ (ГАУ) им. С. Орджоникидзе на основе DYNAMO была разработана среда для разработки имитационных моделей ИМИТАК 32, при помощи которой были созданы региональные модели сельского хозяйства. В ЦЭМИ были созданы и использовались для имитационных моделей такие языки программирования, как GPSS, PLIS и SIMULA.
Если в период "холодной войны" системный анализ и системная динамика, а также разработка имитационных моделей носили ярко выраженный идеологический и политический характер, то в настоящее время в области системных исследований все больше и больше развивается международное сотрудничество как в области научных исследований и образования, так и в сфере применения имитационных моделей в бизнесе (управленческий консалтинг). Так, например адаптацией имитационных моделей, разработанных группой под руководством Дж.Ф. Форрестера (Массачусетский технологический институт, Дартмутский колледж), а также разработкой на их основе собственных моделей занимаются в МГУ, МГИМО, НИИСИ, МИФИ, Институте кибернетики им. В.М. Глушкова АН Украины и других организациях. В 1992 г. на базе НИИСИ был организован Институт системного анализа РАН (ИСА РАН), а в марте 1996 г. в Москве был учрежден Международный комитет по общим системам.
Среди современных работ в области системной динамики имитационного моделирования можно отметить работы зарубежных и отечественных ученых, таких как Дж.Ф. Форрестер, Дж. Стерман, Д.Л. Кауфман, М.Р. Гудман, Н. Робертс, Донелла и Деннис Медоузы, М. Месарович, Е. Пестель, Т.К. Абдель-Хамид, Д.Ф. Андерсен, Р.А. Кларк, А. Форд, Д.Н. Ким, Дж.Д. Морекрофт, П.М. Миллинг, Ж.П. Ричардсон, Е.Б. Робертс, Х. Саид, П.М. Сенж, К. Ванг, Е.Ф. Фольштейнхолм, Р. Зараза, Н.Н. Моисеев, Т. Нейлор, А.Г. Гранберг, В.С. Дадаян, Н.В. Чепурных, А.Л. Новоселов, В.И. Дудорин, В.Г. Соколов, В.А. Смирнов, Р.В. Игудин, Д.М. Хомяков и П.М. Хомяков, А. Рыженков, и других авторов (наиболее полный библиографический список работ по системной динамике и информационно-системному анализу, начиная с 1967 г. по настоящее время содержит более 3000 работ).
Помимо этого необходимо отметить работы таких зарубежных и отечественных ученых в области "устойчивого развития", экономики, как А. Маркандия, Д. Пирс, Дж. Диксон, Т. Титенберг, Т.С. Хачатуров, С.Н. Бобылев, А.Л. Бобров, К.В. Папенов, А.А. Голуб, Е.Б. Струкова, Н.П. Тихомиров, М.Я. Лемешев и другие.
Кроме того, для практического применения системно-динамических моделей в образовательном процессе необходимо отметить работы по игровому имитационному моделированию (деловым играм) таких авторов, как И.М. Сыроежин, А.А. Вербицкий, Л.Н. Иваненко, Д.Н. Кавтарадзе, М.М. Крюков, Л.И. Крюкова, В.М. Ефимов, В.Ф. Комаров, В.Н. Макаревич и другие.
2. Системная динамика и имитационное моделирование
2.1. Обзор вопросов системной динамики и имитационного моделирования
Раздел является обзором существующих подходов и программных средств в имитационном моделировании. Приводятся три общепринятые парадигмы системной динамики, дискретно-событийного и агентного моделирования. Более подробно рассматривается агентный подход, сравнительно редко используемый в России, но являющийся основой для создания эффективных систем поддержки принятия решений в бизнесе. Раздел предназначен для первоначального знакомства с имитационным моделированием и описания того круга бизнес задач, где его применение может оказаться эффективным.
Имитационную модель можно рассматривать как множество правил, определяющих процессы функционирования некоторой системы и ее переходов из одного временного состояния в следующее. Эти правила могут определяться любым доступным для компьютера способом в виде блок-схем, дифференциальных уравнений, диаграмм состояний, автоматов, сетей. Имитационные модели, как правило, менее формализованы, чем аналитические, система описывается «как она есть», в терминах максимально приближенных к реальным.
В имитационном моделировании к настоящему моменту сложились три самостоятельные парадигмы системная динамика, дискретно-событийное и агентное моделирование. Они соответствуют разным уровням абстракции при создании модели, что обуславливает применение того или иного подхода.
В имитационном моделировании к настоящему моменту сложились три самостоятельные парадигмы системная динамика, дискретно-событийное и агентное моделирование. Они соответствуют разным уровням абстракции при создании модели, что обуславливает применение того или иного подхода.
Принято различать три уровня абстракции: высокий (стратегический), средний (тактический) и низкий (оперативный) [1]. При низком уровне моделируется поведение отдельных объектов, но, в отличие от физического моделирования, используются не точные траектории и времена, а их усредненные или стохастические значения. На этом уровне принято решать задачи, связанные с диспетчеризацией, различными видами транспортировки изделий и материалов, компьютерными системами. На среднем уровне абстракции обычно оперируют с расписаниями, задержками, мощностями и емкостями, физическое перемещение при этом не анализируется. Здесь абстрагируются от индивидуальных свойств объектов моделирования (людей, машин, товаров) и в основном рассматривают их потоки.
Характерными задачами этого уровня являются системы массового обслуживания, модели бизнес-процессов, логистика. При высоком уровне абстракции в модели, как правило, отсутствуют индивидуальные объекты сами по себе, а оперируют лишь с их количеством и агрегированными показателями. На данном уровне моделируется проблемы рыночного равновесия, социально-экономического развития отраслей, экологические процессы.
Дискретно-событийное моделирование
Подходом, соответствующим низкому и среднему уровню абстракции, является дискретно-событийное (далее ДС) моделирование. Его концепцию предложил в 60-х годах прошлого века Джефри Гордон, разработав популярное и сегодня программное средство GPSS. В работе [2] он предложил использовать концепции заявок (entities), ресурсов и потоковых диаграмм (flowcharts). На рис.2.1 изображена типичная потоковая диаграмма, согласно которой моделируется работа call-центра.
Рис.2 1. Пример потоковой диаграммы «обработка звонков в call-центре»
Заявки, в данном случае звонки, представляют собой некие пассивные объекты, которые перемещаются, захватывают и освобождают ресурсы согласно потоковым диаграммам схемам, описывающим изучаемый процесс. Заявки могут представлять собой людей, товары, детали, документы, сообщения. ДС моделирование является дискретным каждому событию соответствует определенный дискретный момент времени. Характерной чертой данного подхода является «обезличенность» заявки, от ее индивидуальных свойств абстрагируются. Считается, что все заявки обладают универсальной логикой поведения и обрабатываются по единому, заранее известному алгоритму. Ядро модели отвечает за генерацию, обработку и уничтожение заявок.