Капуста, неверные мужья и зебра. Загадки и головоломки для развития критического мышления - Алекс Беллос 13 стр.


В случае подбрасывания обычной монеты вероятность выпадения орла или решки равна 50: 50. Допустим, ваша монета с дефектом, из-за чего вероятность выпадения орла или решки составляет не 50: 50, а какое-то другое соотношение. Можно ли сделать так, чтобы она вела себя как обычная монета? Необходимо найти такую комбинацию подбрасываний, которая обеспечит результат 50: 50.

Монеты  важнейший инструмент в мире головоломок; в следующей главе мы поговорим о них подробнее.


Рычажные весы были единственным инструментом для взвешивания предметов вплоть до XVIII столетия, когда были изобретены пружинные весы с одной чашей. Будучи распространенным измерительным прибором, рычажные весы часто были героями математических головоломок, начиная с эпохи Возрождения до эпохи Просвещения и позднее. Решите одну из них.


Ответ

У вас есть рычажные весы и две гири весом 10 и 40 граммов. Разделите 1 килограмм муки на две части  200 и 800 граммов  за три взвешивания.

Предположим, у нас есть набор килограммовых гирь, соответствующих первым шести членам последовательности удваивающихся чисел: 1, 2, 4, 8, 16, 32. Комбинируя эти шесть гирь, можно получить любой вес от 1 до 63 килограммов. Например:


3 = 2 + 1.


Другими словами, для того чтобы получить 3 килограмма, необходимо взять две гири весом 2 и 1 килограмм.

13 = 8 + 4 + 1;

27 = 16 + 8 + 2 + 1;

63 = 32 + 16 + 8 + 4 + 2 + 1.

В действительности шесть гирь образуют минимальный набор, позволяющий измерить любой вес в килограммах от 1 до 63.

Почему это так, можно понять, рассматривая выражение веса в двоичных числах. В двоичной системе счисления используются только цифры 1 и 0. Двоичные числа  это числа десятичной системы, записанные с помощью 1 и 0: 1, 10, 11, 100, 110 и т. д. Числа 1, 10, 100, 1000, 10 000 и 100 000 в двоичной системе счисления соответствуют десятичным числам 1, 2, 4, 8, 16 и 32. Таким образом, двоичные числа  это своего рода инструкции в отношении того, как выстраивать числа с помощью последовательности, в которой каждый очередной член в два раза больше предыдущего. Таким образом, в двоичной системе следующие числа записываются так:


3  это 11

13  1101

27  11 011

63  111 111


Цифра 1 в крайнем правом столбце соответствует 1, цифра 1 в соседнем столбце  2, цифра 1 в следующем столбце  4 и т. д. Аналогичным образом цифра 0 в крайнем правом столбце означает отсутствие цифры 1, цифра 0 в соседнем столбце означает отсутствие цифры 2, цифра 0 в следующем столбце  отсутствие цифры 4 и т. д.

3  это 11

13  1101

27  11 011

63  111 111


Цифра 1 в крайнем правом столбце соответствует 1, цифра 1 в соседнем столбце  2, цифра 1 в следующем столбце  4 и т. д. Аналогичным образом цифра 0 в крайнем правом столбце означает отсутствие цифры 1, цифра 0 в соседнем столбце означает отсутствие цифры 2, цифра 0 в следующем столбце  отсутствие цифры 4 и т. д.

Итак, возьмем число 13, которое записывается в двоичной системе как 1101. Эта группа цифр справа налево означает: одна цифра 1, нет цифры 2, одна цифра 4 и одна цифра 8. Другими словами, 13 = 1 + 4 + 8  как и было сказано.

Но давайте больше не будем отвлекаться на двоичные числа, какой бы интересной ни была эта тема. Вернемся к весам и гирям.

Поскольку наш набор гирь (1, 2, 4, 8, 16, 32) позволяет измерить любой вес в килограммах от 1 до 63, мы можем взвесить любое целое количество килограммов от 1 до 63, положив на одну из чаш весов соответствующую комбинацию гирь. А что, если использовать обе чаши?


Ответ

У вас есть рычажные весы. С помощью какого минимального набора гирь можно измерить любой вес от 1 до 40 килограммов в целых числах, если гири можно класть на любую чашу?

Эта задача включена в книгу Леонардо Пизанского Liber Abaci («Книга абака», или «Трактат об арифметике»), хотя она более известна как задача о гирях французского математика Клода Гаспара Баше.

Баше был поэтом, переводчиком и математиком, а также автором сборника головоломок. В 1612 году он опубликовал первое издание книги Problèmes Plaisants et Délectables Qui Se Font Par Les Nombres («Занимательные и приятные числовые задачи»). В ней собраны многие из тех головоломок, с которыми вы здесь уже встречались, такие как переправа через реку, покупка сотни птиц и переливание жидкости в трех кувшинах. На протяжении трех столетий сборник Problèmes Plaisants считался стандартным текстом по занимательной математике, на нем основывалась вся последующая литература о головоломках. Кроме того, в книге Баше представлен самый известный анализ задачи с рычажными весами.

Баше внес еще один важнейший вклад в историю математики: перевел «Арифметику» древнегреческого математика Диофанта на латынь. Именно на одной из страниц этого перевода французский математик Пьер Ферма написал, что нашел чудесное доказательство теоремы, сформулированной под влиянием этого текста, но не может записать его, поскольку поля книги слишком узкие. Доказательство последней теоремы Ферма (уравнение an + bn = cn не имеет решений, выраженных в целых ненулевых числах a, b и c, если n больше 2) ускользало от математиков на протяжении 350 лет, что сделало ее за это время самой знаменитой нерешенной задачей в математике.

Вот вам задача для подготовки:

У вас есть восемь идентичных монет. Девятая монета фальшивая: она выглядит так же, но весит чуть меньше остальных монет. Сможете ли вы найти ее всего за два взвешивания?

Возможно, вы захотите решить эту задачу самостоятельно, в таком случае не читайте написанное далее. Я привожу здесь решение, чтобы вы смогли справиться со следующими головоломками.

Чтобы решить задачу о фальшивой монете, разделите монеты на три группы по три монеты. Если мы обозначим их номерами 1, 2, 3, 4, 5, 6, 7, 8 и 9, то первый раз взвешиваем монеты 1, 2, 3 и монеты 4, 5, 6. При этом чаши весов будут либо уравновешены, либо нет.



Если чаши весов уравновешены, как показано на рисунке слева, значит, более легкая монета  это номер 7, 8 или 9. Если одна чаша весов перевешивает другую, как на среднем рисунке, то более легкая монета  это номер 1, 2 или 3. Если же чаши весов расположены как на рисунке справа, значит, это монета номер 4, 5 или 6. Во всех трех случаях мы можем сузить вероятность поиска более легкой монеты с одной из девяти до одной из трех.

Теперь, при втором взвешивании, нам остается только сравнить вес одной из оставшихся монет с другой монетой, отложив третью в сторону. Более тяжелая монета перевесит чашу весов, а если чаши будут уравновешены, то фальшивая монета  та, что вы отложили. Вот и все.


Следующая задача стала широко известной во время Второй мировой войны. Она привела лучшие умы союзников в такое смятение, что кто-то даже предложил подкинуть фальшивую монету на вражескую территорию, чтобы вызвать хаос в мозговом центре немцев.

У вас есть 11 одинаковых монет. Двенадцатая монета  фальшивая. С виду она такая же, как все, но отличается весом. Вам неизвестно, легче она или тяжелее остальных.

Сможете ли вы за три взвешивания найти фальшивую монету и определить, легче она или тяжелее других монет?

Кстати, для весов с одной чашей (таких как современные цифровые весы, показывающие вес в килограммах) тоже можно придумать интересные головоломки с фальшивыми монетами.


Ответ

У вас десять стопок монет, по десять монет достоинством один фунт в каждой. Девять стопок состоят из подлинных однофунтовых монет, а в одной  все монеты фальшивые. Вам известен вес однофунтовой монеты, а также то, что фальшивая монета на 1 грамм тяжелее настоящей. Какое минимальное количество взвешиваний требуется для того, чтобы определить стопку фальшивых монет на весах с одной чашей?


Преемником Клода Гаспара Баше в части придумывания головоломок считается француз Эдуард Люка, чьи труды по занимательной математике появились в конце XIX века. Помимо того что Люка был виднейшим математиком своего времени и добился больших успехов в понимании простых чисел, он изобретал новые головоломки и анализировал классические задачи такого рода. Рассказанная далее история подлинная и взята из французского учебника по математике 1915 года. Автор пишет, что случай произошел на научной конференции много лет назад. Несколько известных математиков, в том числе выдающихся, прохаживались после обеда и беседовали. Люка вступил с ними в разговор и предложил решить представленную далее задачу. Одни математики ответили неправильно, другие промолчали. Задачу так никто и не решил.

Вам слово, дорогой лектор.


Ответ

Ежедневно в полдень океанский лайнер отправляется из Гавра в Нью-Йорк; в то же самое время из Нью-Йорка в Гавр тоже выходит лайнер. Путь через океан в любом направлении занимает ровно семь дней и семь ночей. Сколько лайнеров до прибытия в Нью-Йорк встретит на своем пути лайнер, вышедший из Гавра сегодня?

Мне нравится эта задача, поскольку притом что речь в ней идет о рядовом событии (корабли отправляются и прибывают в порт), присутствует также интересная математическая изюминка. Существует множество замечательных головоломок о транспорте, которые зачастую касаются того, о чем люди размышляют во время путешествий.


Ответ

Самолет совершает рейс из пункта А в пункт Б и обратно. В безветренный день полет занимает одинаковое количество времени в обоих направлениях. Но что произойдет, если погода будет ветреной? Полет в два конца займет больше или меньше времени, столько же, как обычно, или это зависит от направления ветра?

Допустим, ветер дует в одном направлении на протяжении всего полета. Очевидно, что при попутном ветре при движении самолета туда и обратно полет в два конца займет меньше времени, чем при полном отсутствии ветра. Можно предположить, что самолет летит из пункта А в пункт Б по прямой линии туда и обратно. Для начала проанализируйте, что произойдет, если самолет летит из пункта А в пункт Б при попутном ветре, ускоряющем его движение на этом участке пути, а возвращается при встречном, замедляющем его перемещение в обратном направлении. Будет ли влияние ветра полностью нейтрализовано в этом случае? Подумайте также о том, как будет лететь самолет, если ветер станет дуть под углом к траектории полета.

Изучение приборной панели во время длинной поездки на автомобиле тоже дает повод для арифметических развлечений.


Ответ

Обычно в современных автомобилях устанавливают два одометра (измеряют количество оборотов колеса). Первый измеряет общий пробег автомобиля за весь период эксплуатации (его показания не обнуляются), а второй измеряет путь, пройденный автомобилем за одну поездку (его показания можно обнулить). Если показания любого из одометров будут состоять из одних девяток, то следующее число, которое он покажет, будет включать в себя только нули.

Назад Дальше