Мораль истории такова: любой ценой предоставьте сильным возможность сражаться друг с другом.
К тексту
У нас есть три ящика с табличками «яблоки», «апельсины», «яблоки и апельсины», и мы можем достать фрукт из одного из них.
Давайте проанализируем возможные варианты развития событий. Предположим, мы достали фрукт из ящика с табличкой «яблоки». Если это яблоко, мы понимаем, что здесь должны быть яблоки и апельсины. В этом ящике не могут храниться одни яблоки, поскольку таблички не соответствуют содержимому, а на табличке написано «яблоки». Остаются два ящика с табличками «апельсины» и «яблоки и апельсины» и два возможных содержимых: только апельсины и только яблоки. В ящике с табличкой «апельсины» не могут быть апельсины, поскольку таблички не соответствуют содержимому, значит, в нем яблоки. Остается ящик «яблоки и апельсины» с апельсинами и мы правильно определили содержимое всех ящиков.
Ура! Похоже, мы решили задачу. Однако это не так. Поскольку наша стратегия сводится к выбору фрукта из ящика с табличкой «яблоки», есть вероятность, что им окажется апельсин. А если мы достанем апельсин из ящика с табличкой «яблоки», то можем решить, что в нем находятся либо апельсины, либо яблоки и апельсины, а значит, не сможем определить, что именно. Точно так же если мы выберем фрукт из ящика с табличкой «апельсины», то есть вероятность, что достанем яблоко и, следовательно, не сможем узнать, что в ящике яблоки или яблоки и апельсины.
Решение заключается в том, чтобы выбрать фрукт из ящика с табличкой «яблоки и апельсины». В действительности вы, возможно, уже пришли к этому выводу и без представленных выше рассуждений. Если в головоломке есть единственное решение на основе выбора из трех вариантов, два из которых взаимозаменяемы (как «яблоки» и «апельсины»), то оно должно быть получено в результате выбора варианта, отличного от остальных.
Так что достаем фрукт из ящика с табличкой «яблоки и апельсины». Если это яблоко, нам понятно, что в ящике только яблоки. Остаются ящики с табличками «яблоки» и «апельсины», то есть ящик с апельсинами и ящик с яблоками и апельсинами. В ящике с табличкой «апельсины» не могут быть только апельсины, а значит, он с яблоками и апельсинами. Следовательно, в ящике с табличкой «яблоки» находятся апельсины. Вот так можно правильно развесить таблички на всех ящиках. То же самое мы могли бы сделать и в случае, если бы фруктом, который мы достали из ящика с табличкой «яблоки и апельсины», оказался апельсин, поскольку рассуждали бы аналогичным образом, только заменив яблоки на апельсины.
К тексту
Сначала нам необходимо установить, кто этот мужчина. Похоже, что наиболее вероятный кандидат Сид. Но этот путь приведет нас к противоречию. В задаче сказано, что у этого мужчины нет в руках приправы. Если это Сид, то у него не может быть и соли из-за его фамилии, а значит, у него должен быть перец. Зато у Риза не может быть перца, как, впрочем, и соли, поскольку во время диалога он отвечает тому, у кого она есть. Следовательно, у Риза тоже должен быть перец, а это противоречие.
Так этот мужчина Фил? Фил мужское имя! Мы снова столкнулись с противоречием. Судя по диалогу, он не человек с солью. Тогда, если тот мужчина Фил, у него не может быть соли, так же как и перца, потому что название этой специи совпадает с его фамилией. Таким образом, у него должна быть приправа. Но в задаче говорится, что у мужчины нет приправы.
Методом исключения приходим к выводу, что этим мужчиной должен быть Риз. Поскольку у этого мужчины нет соли, значит, у Риза должен быть перец. А приправа должна быть у Сида, соль у Фила.
(Если вам интересно, Сид это уменьшительная форма имени Сидни, которое становится все более популярным женским именем, а Фил уменьшительная форма имени Филиппа.)
Методом исключения приходим к выводу, что этим мужчиной должен быть Риз. Поскольку у этого мужчины нет соли, значит, у Риза должен быть перец. А приправа должна быть у Сида, соль у Фила.
(Если вам интересно, Сид это уменьшительная форма имени Сидни, которое становится все более популярным женским именем, а Фил уменьшительная форма имени Филиппа.)
К тексту
Определить, как прошла игра, можно следующим образом. Проанализируем те шесть раз, когда Адам выбирает ножницы. Поскольку нам известно, что ничьих не бывает, на каждые шесть ножниц Ева выбирает либо камень, либо бумагу. Ева два раза выбирает камень и четыре бумагу, из чего мы можем сделать вывод, что всякий раз, когда она называет либо камень, либо бумагу, Адам назвал ножницы. Ножницы Адама проигрывают два раза (камню) и выигрывают четыре раза (бумаге). Общий счет: Адам 4, Ева 2.
В оставшихся четырех сетах Ева каждый раз выбирает ножницы, а Адам три раз называет камень и один раз бумагу. В этом случае счет такой: Адам 3, Ева 1.
Итоговый счет: Адам 7, Ева 3.
Адам побеждает.
К тексту
Мисс Аткинсон исходит из того, что ее лицо чистое, а два других пассажира смеются друг над другом. Предположим, один находится слева, а другой справа. Допустим, мисс Аткинсон становится на место одного из двух пассажиров, скажем, того, кто сидит слева. Этот пассажир видит пассажира справа, чье лицо испачкано сажей, и мисс Аткинсон, на лице которой сажи нет. Таким образом, пассажир слева смеется, потому что лицо пассажира справа испачкано сажей. Далее мисс Аткинсон размышляет так: тогда почему, по мнению пассажира слева, смеется пассажир справа? Пассажир слева исходит из того, что у него на лице нет сажи, тогда над кем же смеется пассажир справа? Единственная неприятная вероятность: он, должно быть, смеется над мисс Аткинсон! Сделав такой вывод, она немедленно достает носовой платок и вытирает лицо.
К тексту
Если вы решили две последние головоломки (или хотя бы прочитали их решение), у вас есть почти все инструменты для решения этой. Возможно, вы обратили внимание на то, что эти задачи представляют собой разные вариации одной: в первой участвуют две девочки (имеется в виду задача 16), во второй три пассажира, а в этой 40 жен.
В действительности, если в задаче об испачканных лицах увеличить количество детей с двух до 40, заменить слова «у нее грязное лицо» на слова «у нее неверный муж», а слова «делает шаг вперед» на слова «убивает мужа», то она превратится в задачу о неверных мужьях.
В данной задаче есть один поистине ключевой момент: информация о том, что в городе по меньшей мере один муж изменяет своей жене, кажется на первый взгляд совершенно несущественной и даже не имеющей отношения к тому, что произойдет дальше, поскольку каждая женщина знает, что как минимум один муж нарушил супружескую верность. На самом деле все они знают о 39 негодяях. Тем не менее эти данные запускают поразительную последовательность событий.
Задача об испачканных лицах детей завершилась тем, что обе девочки, поняв, что их лица испачканы грязью, сделали шаг вперед. Но кульминацией этой головоломки становится настоящий фильм ужасов: 40 жен убивают своих мужей в одно и то же время.
Как мы получим такое решение? Представьте, что произойдет, если только один муж изменяет своей жене, а остальные 39 супругов хранят верность. Разумеется, жена единственного прелюбодея не знает, есть ли в городе другие неверные мужья, поскольку все женщины с самого начала думают, что их мужья хранят верность. Поэтому она считает, что все остальные мужья тоже верны своим женам. Узнав о неверности по меньшей мере одного мужа, женщина поймет, что это ее муж (потому что все остальные мужья верны своим женам, а значит, неверным может быть только ее муж), и убьет его на следующий день в полдень.
Теперь допустим, что изменников двое. Их жены (назовем их Агнес и Берта) знают только об одном неверном муже, так как обе убеждены в верности своих супругов. Агнес известно, что муж Берты не хранит верность своей жене, а Берта знает, что муж Агнес изменяет ей. Остальным 38 женам известно, что нарушают верность оба мужа и муж Агнес, и муж Берты. Поскольку все знают о наличии по меньшей мере одного неверного супруга, новость о том, что как минимум один муж изменяет жене, не вызывает беспокойства ни у одного жителя города, и следующий день обходится без кровопролития.
Однако в тот же день после полудня Агнес и Берта приходят в замешательство. Агнес делает вывод (так же как ранее и мы с вами), что если муж Берты единственный неверный супруг в городе, то Берта должна была убить его в полдень на следующий день после того, как узнала, что в городе есть по меньшей мере один неверный супруг. Тот факт, что Берта не убила своего мужа, наводит Агнес на мысль, что Берте известно о существовании второго неверного мужа. Кто же это может быть? Только ее собственный муж! В итоге на следующий день Агнес убивает своего мужа в полдень, в то же самое время, когда Берта (сделавшая аналогичный вывод) убивает своего супруга. Другими словами, при наличии двух неверных мужей оба будут убиты на второй день после сообщения, что в городе есть по меньшей мере один прелюбодей.
Теперь мы можем проанализировать ситуацию с тремя неверными мужьями. Каждая из жен будет думать, что неверных супругов двое, и после того, как минет второй день, а все мужчины останутся живы, жены все поймут. На третий день три женщины убьют своих супругов. Перейдем к сути. Если в городе 40 неверных мужей, ничего не произойдет до сорокового дня, когда наступит кровавая расплата.
Если бы правитель не упомянул о том, что в городе есть как минимум один неверный муж, приведенная выше логическая аргументация была бы невозможна, и массовое убийство на городской площади можно было бы предотвратить.
К тексту
Первый игрок, Альгернон, может узнать цвет своей шляпы только в том случае, если увидит зеленые шляпы на двух своих друзьях, поскольку это означает, что у него красная шляпа. Если он не знает цвета своей шляпы, то он должен увидеть либо две красные шляпы, либо красную и зеленую.
Аналогично и Бальтазар должен увидеть две красные шляпы или красную и зеленую. Однако мы, похоже, не так уж далеко продвинулись в решении задачи, потому что смогли определить только возможные варианты решения: во-первых, у всех красные шляпы; во-вторых, у Альгернона и Бальтазара зеленые шляпы; в-третьих, лишь у Каратака зеленая шляпа.
Так как Каратак видит только красные шляпы, мы можем исключить вариант 2. А теперь представьте, что вариант 3 верен и у Каратака зеленая шляпа. Предположим, это действительно так, и проанализируем вопрос снова. Альгернон увидел бы зеленую и красную шляпу, после чего пришел бы к выводу, что не знает, какого цвета его шляпа. Бальтазар видит, что у Каратака зеленая шляпа. Исходя из того что Альгернон не знает цвета своей шляпы, Бальтазар может исключить, что у него самого зеленая шляпа, поскольку если бы это было так, то Альгернон сказал бы, что знает цвет своей шляпы! Таким образом, Бальтазар узнает, что у него красная шляпа, а в этом случае он не может сказать, что не знает цвета своей шляпы. Предположение о том, что вариант 3 верен, приводит нас к противоречию, следовательно, на самом деле верен вариант 1: у Каратака красная шляпа.