Воды мира. Как были разгаданы тайны океанов, атмосферы, ледников и климата нашей планеты - Сара Драй 17 стр.


Но он с самого начала знал, что эти усилия себя оправдают, как знал и то, что трудности неизбежны. Момент, когда Пьяцци Смит в первый раз посмотрел в окуляр телескопа и увидел звездное небо таким, каким его никто никогда прежде не видел, стал возможен благодаря прозрачности атмосферы и отсутствию в ней водяных паров, но также благодаря многим людям и их труду, интеллектуальному и физическому, целой цепочке людей, помощь которых сопровождала ученого от Лондона и Эдинбурга до вершины вулкана на Тенерифе. Так всегда и бывает с научными исследованиями: очень много работы и как результат  возможность заглянуть чуть дальше и увидеть чуть больше, чем это удавалось до сих пор.

Итак, когда Пьяцци Смит в первый раз посмотрел в окуляр телескопа, перед ним распахнулся космос и самые далекие звезды. Он мог заглянуть дальше, намного дальше, чем кто-либо до него. Да, это стоит повторить: стоя на вершине, вооруженный мощным телескопом, с чистейшим прозрачным воздухом над ним, Чарльз Пьяцци Смит мог видеть на такие далекие расстояния, какие раньше казались немыслимыми. Первая же ночь наблюдений в высотной обсерватории превзошла весь его предыдущий опыт астрономических наблюдений. Двойные звезды, обычно размытые и нечеткие, ярко сверкали на черном небе. Можно было отчетливо разглядеть даже самые слабые звезды 16-й величины. У Пьяцци Смита быстро закончились астрономические тесты, с помощью которых можно было оценить, насколько улучшилось качество наблюдений[90].

Доказав возможность и ценность астрономических наблюдений высоко в горах, Пьяцци Смит приступил к работе, благодаря которой астрономия должна была сделать впечатляющий шаг вперед  ответить наконец на вопрос, что такое звезды и планеты, а не только где они находятся. С помощью приборов, которые ученый привез с собой и доставил на вершину вулкана, он мог приступить к тому, о чем говорил Гумбольдт: начать распутывать нити физических явлений, переплетение которых и создавало наше представление о земле и небе. Что вызывает циклические изменения пятен на Солнце? Что за красные выступы на поверхности Солнца видны во время затмений, но, вероятно, существуют там постоянно? Какова природа двойных звезд и как меняется со временем их вращение? Наконец, какие силы воздействовали на приливы, погоду Земли, ее магнитное поле?

Вопросов было множество. Ответить на все не представлялось возможным. Но тот факт, что они возникали, показывал, как сильно изменилось отношение человечества к земле и небу. Благодаря усовершенствованию старых и изобретению новых приборов у ученых появилась возможность «увидеть» невидимые физические явления. Все более мощные телескопы позволяли улавливать свечение даже очень далеких объектов и исследовать небесные тела в подробностях. Почти сразу же после изобретения в астрономии была использована фотография: в 1839 г. Луи Дагер сделал первый размытый снимок Луны, а уже год спустя Джон Дрейпер, придумав, как отследить движение Луны в ходе длительной экспозиции, сделал первую четкую фотографию спутника Земли. За этим последовали первые снимки Солнца, сделанные в 1840-х гг., и первая фотография звезды  Веги  в 1850 г. Но самым передовым прибором из всех стал спектроскоп, превративший свет в бесценный источник данных о составе далеких объектов. Спектрографические исследования предоставили очередное мощное доказательство единства природы, показав, что Земля и космос состоят из одних и тех же элементов.


О существовании дисперсии света было известно на протяжении многих веков. Еще Леонардо да Винчи обратил внимание на «цвета радуги» на пузырьках воздуха в стакане воды. Исаак Ньютон впервые заявил о себе научному обществу, показав, что при прохождении через прозрачную стеклянную призму луч света превращается в многоцветную полосу, которую он назвал «спектром»  на латыни это слово (spectrum) имеет двойное значение: «мысленный образ» и «призрак». Именно Ньютон выделил в нем семь основных цветов, и на протяжении всего XVIII в. в науке сохранялось такое представление о спектре. Только в 1802 г. физик Уильям Волластон, наблюдая спектр через очень узкую щель, заметил, что поверх цветовой палитры наложена череда черных линий. Он предпринял попытку картировать эти линии, выделив пять наиболее заметных и обозначив их соответствующими заглавными буквами от A до E. В 1824 г. Йозеф фон Фраунгофер, немецкий оптик, специализировавшийся на изготовлении высококачественных оптических стекол, призм и объективов (и, следовательно, интересовавшийся вопросом, что спектр может сказать о чистоте стекла), значительно расширил эту карту, выделив более 500 таких линий и дав им уникальные обозначения, используемые по сей день.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

О существовании дисперсии света было известно на протяжении многих веков. Еще Леонардо да Винчи обратил внимание на «цвета радуги» на пузырьках воздуха в стакане воды. Исаак Ньютон впервые заявил о себе научному обществу, показав, что при прохождении через прозрачную стеклянную призму луч света превращается в многоцветную полосу, которую он назвал «спектром»  на латыни это слово (spectrum) имеет двойное значение: «мысленный образ» и «призрак». Именно Ньютон выделил в нем семь основных цветов, и на протяжении всего XVIII в. в науке сохранялось такое представление о спектре. Только в 1802 г. физик Уильям Волластон, наблюдая спектр через очень узкую щель, заметил, что поверх цветовой палитры наложена череда черных линий. Он предпринял попытку картировать эти линии, выделив пять наиболее заметных и обозначив их соответствующими заглавными буквами от A до E. В 1824 г. Йозеф фон Фраунгофер, немецкий оптик, специализировавшийся на изготовлении высококачественных оптических стекол, призм и объективов (и, следовательно, интересовавшийся вопросом, что спектр может сказать о чистоте стекла), значительно расширил эту карту, выделив более 500 таких линий и дав им уникальные обозначения, используемые по сей день.

Наблюдение спектра оказалось непростым делом. Никто не знал, сколько именно в нем должно быть линий. Чем пристальнее вы смотрели, тем больше, казалось, их обнаруживалось. Неясно было их происхождение. Из-за всего этого сложно было понять, насколько в данном случае можно доверять своим глазам. Серьезные затруднения вызывала и фиксация увиденного в графической форме. Пьяцци Смит, смолоду обучавшийся навыкам точного отображения астрономических явлений, в совершенстве овладел такими техниками, как изобретенный Джоном Гершелем способ изображения звезд с помощью «тончайшей кисти из верблюжьего волоса» и последовательного нанесения тонких слоев лака. Достоверно изобразить такие эфемерные явления, как полярное сияние, облако небулярного газа или хвост кометы, можно было только благодаря «точности глаза, умелости рук и должному пониманию предмета»[91]. Спектр с его линиями разной толщины, то возникающими, то сходящими на нет, был в этом смысле особенно сложным объектом.

Выдающийся изобретатель Чарльз Бэббидж, бивший тревогу по поводу упадка британской науки по сравнению с французской и немецкой, считал, что умение видеть  это навык, требующий особого развития и важный для всей национальной науки. В своих «Размышлениях об упадке науки и некоторых причинах этого» он привел пример с наблюдением за спектральными линиями Солнца. Когда он впервые посмотрел через спектроскоп, то, как ни старался, ничего не увидел. Только после того, как Гершель объяснил ему, «как смотреть», Бэббидж сразу же их увидел  и удивился тому, как не разглядел прежде. С тех пор он видел спектральные линии каждый раз, когда смотрел в спектроскоп[92]. Из этого Бэббидж делал вывод, что без хорошей системы подготовки наблюдателей британская астрономия не сможет конкурировать на международной арене.

Первоначально астрономы стремились к тому, чтобы составить как можно более полную карту спектральных линий. Но довольно скоро стало ясно, что количество видимых линий зависит не только от размера телескопа и качества призмы, но и от времени суток и направления, в котором повернут телескоп. В 1833 г. шотландский физик Дэвид Брюстер опубликовал результаты своего многолетнего труда. Он не только наблюдал спектр с разрешением в четыре раза выше, чем сумел добиться Фраунгофер, но и делал это в разное время года, в разных метеорологических условиях и при разных положениях Солнца на небе. Эти кропотливые наблюдения Брюстера вполне соответствовали учению Гумбольдта о разделении физических феноменов на составляющие ради их лучшего понимания. Но в 1856 г., когда Пьяцци Смит отправился на Тенерифе, происхождение черных линий на солнечном спектре было все еще не ясно.

Вот почему Пьяцци Смит работал не только по ночам, когда видны были звезды, но и днем, занимаясь спектрографическими наблюдениями за солнечным светом  именно для этой цели сам Королевский астроном одолжил ему свой спектроскоп. Британские ученые мужи, ограниченные возможностями своих городских обсерваторий, хотели знать, что станет с этими характерными линиями на солнечном спектре, если посмотреть на них с вершины горы. Изменятся ли они? Или исчезнут вовсе? А как они будут выглядеть на закате и на восходе солнца?

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Гора в данном случае помогала преодолеть препятствие в виде поглощающей большую часть солнечного спектра земной атмосферы. Находясь на высоте, вооруженный самым современным научным прибором  спектроскопом, состоявшим из телескопа с узкой входной щелью (последняя растягивала спектр, что позволяло лучше видеть фраунгоферовы линии) и призмы, Пьяцци Смит имел уникальную возможность получить ответы на многие вопросы. Направляя спектроскоп на Солнце в полдень, он в этот момент находился ближе к солнечной атмосфере, чем любой другой наблюдатель на поверхности Земли. А во время наблюдений за солнцем на восходе и на закате, когда оно почти касалось горизонта, Пьяцци был отделен от светила самым толстым слоем земной атмосферы, чем кто-либо другой на планете.

Со своей наблюдательной станции Пьяцци Смит мог безо всяких усилий и с удивительной четкостью увидеть как далекие звезды, так и Солнце. Глядя на него на закате через спектроскоп, он видел, что темных линий буквально на глазах становится больше. Это свидетельствовало о том, что по крайней мере некоторые из них имели земное происхождение, будучи видимым следом какого-то невидимого вещества, количество которого увеличивалось по мере утолщения слоя земной атмосферы, отделявшего его от Солнца. Это также означало, что спектр, показываемый любым направленным в небо спектроскопическим прибором, всегда отражал содержание одновременно и солнечной, и земной атмосфер. Конечно, это существенно осложняло задачу по определению состава такого далекого небесного объекта, как Солнце, да еще фактически с помощью кусочка стекла. Но все же наблюдения Пьяцци Смита на Тенерифе показали, что спектроскоп, используемый в правильном месте правильным образом, может быть полезным инструментом как для выявления различий между содержимым солнечной и земной атмосфер, так и для исследования самого воздушного океана, омывающего нашу планету.

Назад Дальше