Оказалось, это явление подчиняется строгим законам. Они были открыты знаменитым английским ученым Майклом Фарадеем в начале тридцатых годов прошлого века. Зная эти законы, люди научились защищать металлы от коррозии, наносить рисунки на объемные детали, снимать слепки с различных фигур. Очень важное применение электролиза получение чистых металлов из их растворов или расплавов, а также многих химических соединений, которые иным путем изготавливать не удается.
Посмотрите вокруг себя. Не скрывается ли под тонкой оболочкой многих приборов и украшений какой-нибудь простой и дешевый материал?
Откуда ток берется в пустоте?
Возможны ли частицы без заряда? Даже если это мельчайшие частички вещества атомы или молекулы они вполне могут быть незаряженными, нейтральными. А может быть заряд без частички? Оказывается, нет. Нигде мы не обнаружим заряда, «гуляющего», как киплинговская кошка, самого по себе. Всегда он к чему-то «приконопачен» к электрону, к протону или к их комбинациям ионам.
Подобный вопрос пришлось обсуждать, когда возникла задача пропустить ток через вакуум. Встала такая задача с развитием радиотехники. Может быть, вам приходилось заглядывать в «нутро» старых радиоприемников или телевизоров. Вы замечали, сколько там разнообразных ламп с хитроумной начинкой? А ведь из них откачан воздух, и все электрические процессы протекают в пустоте. Сегодня ламповые приборы из-за большого потребления энергии и не очень высокой надежности вытеснены более эффективными, полупроводниковыми. Но вот одну большую лампу вы и по сей день встретите как в телевизорах, так и в дисплеях. Это кинескоп.
Итак, поскольку внутри этих малых и гигантских ламп нет, можно сказать, ничего, то что же будет переносить там электрический заряд? Так как он «отдельно» от частичек не существует, то ответ напрашивается сам собой. В откачанное от воздуха пространство необходимо «впрыснуть» заряженные частички. Это и делают, нагревая, например, металлы, из которых как бы испаряются электроны.
Вот теперь есть чем погонять «электрическому ветру». Подавая, скажем, на кинескоп высокое напряжение, можно так манипулировать электронами, что они будут послушно выполнять любые приказы. Да, собственно, вы наблюдаете за этим каждый день, смотря телевизор. Ведь изображение на его экране не что иное, как результат «бомбардировки» электронным пучком светящегося от его ударов вещества. А уж когда начинается электронная игра на дисплее или вам демонстрируют чудеса компьютерной графики, можно понять, насколько велики возможности электронного луча, несущегося в вакууме.
Что роднит молнию и сварочный аппарат?
Отчего светятся разными цветами рекламные трубки? Почему горят люминисцентные лампы, или, как их еще называют, лампы дневного света? Почему сверкает молния? Почему горит электрическая дуга, скажем, при сварке? Оказывается, все эти, на первый взгляд, различные примеры свечения объединяет одно это электрический разряд в газах.
Газы неплохие изоляторы, так как в «чистом» виде это нейтральные молекулы. Поэтому, чтобы через газ прошел электрический ток, заряды в нем каким-то образом надо создать. Ухищрений для этого придумали много. Можно газ облучать, подогревать, «впрыскивать» в него заряженные частички. Но самый важный процесс при разряде когда электроны, подгоняемые напряжением, смогут так разогнаться, что при ударе о нейтральную молекулу газа выбьют из нее новый электрон.
Что останется тогда от молекулы? По массе она почти ничего не потеряет электрон слишком легок. А вот если от ее нулевого заряда электрон, оторвавшись, «утащит» с собой отрицательный заряд? Конечно, вы догадались молекула газа зарядится положительно и станет ионом.
Вот как газы-диэлектрики, выдерживающие высокое напряжение, в какой-то момент становятся прекрасными проводниками. При протекании по ним электрического тока молекулы газов из-за электронной бомбардировки оказываются способными излучать свет. Это их качество активно используется сейчас в самых разных отраслях науки, техники и быта. Отметим лишь одно изобретение, сыгравшее в дальнейшем огромную роль.
Павел Николаевич Яблочков (18471894) российский электротехник. Исследовал электричество как источник света. Изобрел дуговую лампу «свечу Яблочкова». Положил начало первой применимой на практике системе электрического освещения. Занимался созданием электрических машин и вопросами получения электричества непосредственно из химической энергии угля.
Павел Николаевич Яблочков (18471894) российский электротехник. Исследовал электричество как источник света. Изобрел дуговую лампу «свечу Яблочкова». Положил начало первой применимой на практике системе электрического освещения. Занимался созданием электрических машин и вопросами получения электричества непосредственно из химической энергии угля.
В 1802 году русский ученый Василий Владимирович Петров впервые изучил явление, названное им электрической дугой. Впоследствии его стали применять при сваривании металлических деталей. Два электрода, подключенные к мощному источнику тока, способны вызвать между собой ослепительное свечение газа. Наверняка вы наблюдали за электросваркой и знаете, что яркость вспышек так велика, что от нее надо защищать глаза. Сварку с помощью электрического тока изобрели русские инженеры Николай Николаевич Бенардос и Николай Гаврилович Славянов. И где только теперь она не применяется от постройки мостов до сварки корпусов автомашин.
В прошлом же веке электрическую дугу «подрядили» освещать улицы. И сегодня одни из самых мощных осветительных приборов дуговые лампы.
Миниатюрный, надежный? В космос!
Вы, конечно, пользовались транзисторными приемниками. Их иногда просто называют «транзистор». Однако это пусть важная, но только одна деталь приемника, построенного на полупроводниковых элементах.
А что такое полупроводник? Это кристаллики твердых веществ, скажем, кремния, обладающих особыми электрическими свойствами. Например, в отличие от металлов, сопротивление полупроводников с увеличением температуры уменьшается. На их проводимость может влиять облучение светом. А самое интересное, что мы можем менять их способность проводить электрический ток вкраплением примесей разных химических веществ.
Полупроводники, как подсказывает их название, занимают промежуточное место между проводниками и изоляторами. Возможность менять их электрические свойства в широком диапазоне обеспечила им широкое применение в электротехнике, радиоприборах и электронике. Скажем, фотоэлемент, способный замыкать и размыкать электрическую цепь под действием света, построен на основе полупроводников. Чувствительный термометр, замечающий ничтожно малые перепады температур тоже его применение.
Соединение различных полупроводников образует диод прибор, пропускающий ток только в одну сторону. А добавление третьего полупроводника в эту «компанию» позволяет слабыми изменениями тока управлять током большим. Вот это и есть усилитель транзистор.
Благодаря распространению полупроводниковых элементов стало возможным перейти от громоздких вычислительных машин к миниатюрным, умещающимся порой в объеме записной книжки. Маленькие размеры, большой объем памяти и быстродействие позволяют применять такие устройства на борту космических кораблей.
Еще очень важная область, где полупроводники должны сказать свое весомое слово солнечная энергетика. Пока устройства, преобразующие солнечный свет в электроэнергию, не очень эффективны и весьма дороги. Но их уже используют для обеспечения энергией космических комплексов. Солнечные батареи размещают, как вы, наверное, видели, на «крыльях»-панелях орбитальных аппаратов. А не так давно смог самостоятельно двигаться первый автомобиль на солнечных батареях.
Без потерь по проводам
В механических устройствах, как ни старайся, а совсем избавиться от трения нельзя. Наверное, то же самое и с электрическим сопротивлением? На то оно и сопротивление, чтобы мешать электрическому току течь по проводам, терять энергию и выделять ее в виде тепла.
До поры до времени так и считали. Однако оказалось, что природа и здесь подготовила нам сюрприз.
В 1911 году голландский ученый Хейке Камерлинг-Оннес обнаружил удивительное явление. При очень низких температурах, близких к абсолютному нулю, некоторые металлы резко, скачком, теряют свое сопротивление. Это явление получило название сверхпроводимости.
К сожалению, такой «подарок», который обеспечил бы передачу электрической энергии по проводам без потерь, принять людям было трудно. Ведь чтобы создать такие низкие, несуществующие на Земле, температуры, приходилось, как в холодильнике, энергию затрачивать. Поэтому начались многолетние поиски новых, высокотемпературных сверхпроводников.
Шли десятилетия. Лишь в пятидесятых годах это явление получило теоретическое объяснение. Однако температуру необычного состояния удалось поднять только на пару десятков градусов. Чего только не изобретали исследователи! И вот в 1986 году швейцарским ученым удалось найти такие композиции веществ, в которых сверхпроводимость возникала уже при сотне градусов выше абсолютного нуля.
Это, конечно, еще далековато до наших обычных температур. Тем не менее, достижение сверхпроводимости упростилось. Сейчас ее используют во все более широких масштабах при проведении физических экспериментов.
А еще благодаря этому открытию укрепилась надежда, что в скором времени она будет достигнута и при обычных, комнатных температурах.
Подумайте, к каким революционным последствиям может привести появление материалов с нулевым электрическим сопротивлением.
Как зарядиться давлением?
Какие зажигалки вы знаете? Может быть, кому-нибудь встречались старые с фитильком, пропитанным бензином. Или новые, газовые, когда колесиком высекают искру, поджигающую струйку вырывающегося сжатого газа. На кухнях, где стоят газовые плиты, пользуются подсоединенными к сети электрическими зажигалками, в которых проскакивает искра, созданная высоким напряжением. А не попадались ли вам зажигалки без всяких проводов, но так же высекающие искры при нажатии на кнопку?
Действительно, откуда в них берется энергия? Если вы разберете такую зажигалку в поисках батарейки или газового баллончика, то ничего подобного не обнаружите. А найдете внутри небольшой кристалл с подсоединенными к нему проводочками. Это кристалл кварца, который как выяснилось более 100 лет назад, обладает интересными свойствами. При сжатии его с двух сторон на других гранях возникают электрические заряды двух разных знаков, то есть создается электрическое напряжение. Именно его используют в зажигалках для создания искры.