С помощью суперкомпьютера IBM Watson фанаты получают беспрецедентные знания. Теперь искусственный интеллект помогает им узнать больше деталей о матчах и о местах, которые можно посетить в ходе турнира, а также отбирает лучшие моменты игр. Аналитика не только помогает болельщикам, но и способствует успешным выступлениям спортсменов. Кто-то может сказать, что это лишает игру чистоты, но задумайтесь: например, анализ данных может показать теннисистам, сколько усилий они приложили во время матчей. Разве это не замечательно? Теннисисты пользуются данными, чтобы лучше понимать, как они играют. И теннис это не единственный вид спорта, где данные и дата-аналитика работают на благо спортсменов.
Итак, тренеры и спортсмены благодаря данным отчетливее понимают, как правильнее играть и тренироваться, а болельщики получают дополнительную информацию, с которой становится интереснее следить за турниром. Но у нас остался еще один пример: моя любимая компания по производству газировки Coca-Cola (любители Pepsi, пожалуйста, простите).
Как чтение данных может помочь Coca-Cola? Хочу заметить, что в примере, который мы будем разбирать, нет ничего уникального: другие организации также могут воспользоваться сходными техниками. Но для начала давайте разберем ряд конкретных случаев успешного обращения с данными в Coca-Cola[30]. Случай 1: запуск Cherry Sprite стал прямым результатом сбора данных. Потребители заказывали газированный напиток и дополняли его вкусоароматическими добавками. Собрав нужные данные, компания решила запустить напиток с новым вкусом. Случай 2: для поддержания диалога с потребителями используются ИИ-боты. В данном случае бот с искусственным интеллектом был встроен в торговый автомат Coca-Cola и помогал покупателю смешать напиток в соответствии с его личными предпочтениями. Прекрасный способ понять потребителя и узнать потенциально привлекательные рецепты! Случай 3: Coca-Cola посредством социальных сетей узнает, каким образом ее продукция представлена потребителям через различные каналы. Используя неструктурированные данные соцсетей, руководство Coca-Cola понимает, как ее многочисленные потребители относятся к существующим продуктам компании, что и почему они покупают, как и с кем делятся соответствующей информацией. При помощи этих способов использования данных (и не только этих, но и множества других) и без того успешная компания сохраняет лидирующее положение на рынке[31].
Итак, мы рассмотрели три варианта использования данных: управление рисками в банке UOB, работа организаторов US Open по совершенствованию болельщицкого опыта, взаимодействие с потребителями компании Coca-Cola. Эти примеры из реального мира позволяют понять, как организации выигрывают от непосредственного чтения данных. Есть и другие примеры чтения данных, нередко встречающиеся в различных организациях:
отслеживание тенденций и закономерностей маркетинговых кампаний с целью понять, как работают маркетинговые стратегии компании в различных условиях;
понимание демографических условий и тенденций, что позволяет изучать потребительскую базу компании;
понимание различных рыночных трендов, благодаря чему организация разрабатывает новые продукты, запускает их в нужное время и анализирует, насколько успешным был запуск.
В целом можно сказать, что чтение данных помогает успеху инициатив организации в области дата-грамотности. Если коллектив уверенно чувствует себя при обращении с данными, компания способна гораздо быстрее достичь успеха в этой сфере.
Свободное владение данными
Начиная изучение свободного владения данными, давайте мысленно перенесемся в раннее детство когда мы только учились говорить и читать: принципы и идеи раннего развития речи помогут нам осознать, что значит говорить на определенном языке. И это возвращает нас к началу главы, к примеру с путешествием мечты, которое вы планировали. Помните, что в итоге получилось? Увы, все пошло не так, и ваша поездка оказалась основательно подпорчена незнанием местного языка. С организациями такое происходит постоянно. У руководства есть прекрасные идеи по поводу данных и аналитики, они мечтают, каких высот достигнет организация благодаря работе с данными но все это разбивается о стену непонимания: сотрудники не знают, что делать с данными. К счастью, есть замечательный способ убрать эту стену, и он очень прост. Это свободное владение данными.
Свободное владение данными, согласно определению, которое мы с вами будем использовать, это способность говорить на языке данных и понимать его. Иными словами, это общение с помощью данных и о данных. Иногда этим термином подменяют термин «дата-грамотность» в целом, но я против. В этой книге мы определяем дата-грамотность как способность читать данные, работать с ними, анализировать их и общаться на языке данных. Вы, наверное, заметили, что свободное владение данными соответствует последнему элементу определения дата-грамотности способности общаться на языке данных. Но для того, чтобы лучше разобраться в свободном владении данными, нам нужно связать эту способность со всеми четырьмя составляющими дата-грамотности. Через эту призму мы, во-первых, увидим, как свободное владение данными может стать для организации эффективным способом овладения дата-грамотностью, а во-вторых, узнаем, какое место оно занимает в общей стратегии.
Во-первых, давайте посмотрим, что значит говорить на языке данных и понимать его: это и имеется в виду под «свободным владением данными». Представьте себе: вы пытаетесь что-то объяснить собеседнику, а он смотрит на вас, как будто вы разговариваете с ним по-марсиански. Было такое? Отвлечемся от данных и дата-аналитики, вспомним любой бытовой разговор: случается с вами, что через минуту-полторы взгляд собеседника становится отсутствующим? Наверняка. Почему так происходит? Как добиться, чтобы ваши слова гарантированно достигли ушей слушателя?
Это и есть ключевой момент в мире свободного владения данными. В сфере данных у организации должны быть общепринятые практики и общепонятный язык. Когда организация разрабатывает такой язык, свободное общение на нем облегчает принятие решений. Почему? Потому что люди лучше начинают понимать, что именно им говорят. Раньше в организациях любые обсуждения только замедляли работу и мешали добиваться результатов (а кое-где это происходит и сегодня). В большинстве случаев это объяснялось просто: сотрудники не понимали, что до них пытаются донести. А свободное владение данными подразумевает, что сотрудники свободно общаются на понятном каждому из них языке данных, и, следовательно, обсуждения повышают эффективность работы и помогают принимать и выполнять более взвешенные решения.
Чтобы понять, как это работает, давайте рассмотрим простой пример. Представьте себе, что специалист по обработке данных провел анализ и получил убедительный результат. Свободно владея данными, коллектив организации понимает, что именно было проделано, и может применить на практике идеи и решения, полученные в результате этого анализа. Другой пример: допустим, аналитик осуществил некий проект и представляет его руководству, рассчитывая на поддержку. Команда топ-менеджеров, владеющих языком данных, легко и быстро вникает в суть проекта (думаю, это общая мечта чтобы руководители понимали наши запросы и поддерживали наши проекты). Наконец, представьте себе, что в организации существует свободный обмен информацией, поскольку весь коллектив говорит на одном языке данных и аналитики. В этом случае все проекты и стратегии, все результаты анализа без труда принимаются и применяются всеми. Это жизненно важный элемент для успеха организации в сфере данных и их анализа.
Итак, способность сотрудников и руководителей организации свободно общаться на языке данных это не просто приятный бонус, а насущная необходимость. Рис. 5.1 поможет раскрыть суть свободного владения данными. Как мы видим, существует свободный поток информации. Все специалисты по обработке данных, аналитики, ответственные за принятие решений, руководство и, наконец, все рядовые сотрудники могут свободно обмениваться информацией, и это обеспечивает успех стратегии организации. Ничто не должно препятствовать этому успеху, и вы его добьетесь просто положитесь на способность говорить на одном и том же языке.
Словарь данных
При внедрении общего языка данных большим подспорьем оказывается словарь. Приведу одно из определений.
Словари данных используются для предоставления подробной информации о содержимом набора данных или базы данных (например, имена измеряемых переменных, типы или форматы данных, а также текстовые описания). Словарь данных служит исчерпывающим руководством к пониманию и использованию данных[32].
Это определение вернее, описание назначения очень хорошо объясняет, что такое словарь данных и для чего он нужен. Позвольте рассказать вам случай из моей собственной практики: герой моего примера не использовал словарь данных и не практиковал свободное владение данными.
Я руководил большой группой бизнес-аналитиков в компании, предоставляющей финансовые услуги. Наша команда строила специальные сводки для пользователей, составляли словарь данных и обеспечивали систему постоянного хранения данных (SSoR). Обратите особое внимание на последний пункт SSoR, в этом примере он важнее всего. При построении сводок мы использовали множество разнообразных показателей.
Однажды мне написала (или позвонила, точно не помню) помощница президента одной американской группы защиты потребителей. Она спросила меня о каком-то показателе ей хотелось разобраться, почему наше значение не совпадает с тем, которое получили ее сотрудники. Иными словами, наименование показателя было таким же, но цифры совершенно другими, их взяли где-то в другом месте. Возможно, сотрудники у кого-то спросили в надежде на быстрый ответ или, может быть, рассчитали величину сами, если кое-что смыслили в программировании. Вроде бы ничего плохого, да? Но проблема в том, что они пользовались не нашим собственным, а каким-то иным определением показателя, поэтому рассчитали его неправильно. Хуже всего, что эти некорректные цифры уже пошли «в народ», то есть стали достоянием общественности. И теперь нам нужно было придумать, как справиться с последствиями этой проблемы.
Однажды мне написала (или позвонила, точно не помню) помощница президента одной американской группы защиты потребителей. Она спросила меня о каком-то показателе ей хотелось разобраться, почему наше значение не совпадает с тем, которое получили ее сотрудники. Иными словами, наименование показателя было таким же, но цифры совершенно другими, их взяли где-то в другом месте. Возможно, сотрудники у кого-то спросили в надежде на быстрый ответ или, может быть, рассчитали величину сами, если кое-что смыслили в программировании. Вроде бы ничего плохого, да? Но проблема в том, что они пользовались не нашим собственным, а каким-то иным определением показателя, поэтому рассчитали его неправильно. Хуже всего, что эти некорректные цифры уже пошли «в народ», то есть стали достоянием общественности. И теперь нам нужно было придумать, как справиться с последствиями этой проблемы.