Это объясняется тем, что дескриптивная аналитика удобная вещь, если задуматься. Все мы способны оглянуться назад и описать, что произошло. Что мы делали на прошлых выходных? Нам понравился фильм, на который мы ходили? Перейдем к бизнесу: что мы можем почерпнуть из этой сводки? Как закончилась маркетинговая кампания? Сколько новых сотрудников мы наняли в прошлом квартале? И т. д. Кроме того, описательная аналитика приучает сотрудников интересоваться делами и прошлым собственной организации.
Из-за удобства описательной аналитики и отсутствия необходимых навыков работы с данными большинство сотрудников и застревают на первом уровне, не зная, как использовать данные для принятия более сложных и обоснованных решений. Впрочем, многие вообще не в курсе, что есть какие-то четыре уровня аналитики. В итоге организации тратят большие средства на ПО и красивую визуализацию данных, но это никак не сказывается на продуманности решений. Таким образом, застревая на первом уровне, организации лишь усугубляют нехватку навыков у сотрудников.
И еще одно небольшое примечание: не нужно стремиться равномерно распределять время- и трудозатраты между четырьмя уровнями аналитики. Смысл в том, что не нужно, чтобы ваши сотрудники тратили по 25 % времени и сил на каждый уровень; их доля в общей работе не должна быть непременно равной. Разрабатывая и применяя правильные аналитические решения, вы поймете, как поделить время и силы сотрудников между четырьмя уровнями. Далее мы увидим, что при всей важности описательного анализа больше всего времени приходится тратить на работу с методами второго уровня но подробнее об этом позже.
Одна из причин такой распространенности дескриптивной аналитики это нехватка навыков дата-грамотности. Если вы не до конца понимаете, как использовать данные, получится ли у вас успешно применять методы четырех уровней?
Наконец, в мире широко распространена тенденция к чрезмерной визуализации данных. Да, она необходима для успешной работы с данными и дата-аналитики. Она упрощает использование данных, но одной визуализацией работа с данными никак не ограничивается. Она прекрасно подходит для подведения итогов или описания уже случившегося, но, если сотрудники не знают, как двигаться дальше, а только оглядываются назад, им не удастся правильно оценить произошедшее и понять, почему так случилось.
Наконец, в мире широко распространена тенденция к чрезмерной визуализации данных. Да, она необходима для успешной работы с данными и дата-аналитики. Она упрощает использование данных, но одной визуализацией работа с данными никак не ограничивается. Она прекрасно подходит для подведения итогов или описания уже случившегося, но, если сотрудники не знают, как двигаться дальше, а только оглядываются назад, им не удастся правильно оценить произошедшее и понять, почему так случилось.
Когда организации вкладывают деньги в инструменты бизнес-аналитики, нередко оказывается, что большая их часть тратится на отчеты ради отчетов и на средства, позволяющие делать как можно более красивые визуализации. Это может очень навредить организации, которая стремится извлечь настоящую выгоду из данных и дата-аналитики. Я согласен с тем, что визуализация должна быть привлекательной, чтобы людям хотелось эффективно ее использовать, но порой на это уходит слишком много времени, которое можно было бы потратить на более полезные методы работы с данными. Кроме того, если визуализация данных никак не влияет на достижение целей и задач бизнеса, можно ли вообще считать ее эффективной?
Для того чтобы лучше оценить методы первого уровня, стоит разобраться в ПО и технологиях, используемых на этом уровне. Эти технологии не представляют собой ничего из ряда вон выходящего, и большинство из вас о них хотя бы слышали. Наверняка почти все вы знакомы с термином «бизнес-аналитика» и с предназначенными для нее программами. Сегодня доступен целый ряд аналитических программ Microsoft Power BI, Tableau, Qlik, ThoughtSpot и т. д. Все они могут быть отличными инструментами для описательного анализа. Хотя некоторые их возможности рассчитаны и на другие уровни аналитических методов, их главное предназначение именно описательный анализ. Организации обязательно должны вкладывать средства в приобретение этих программ и технологий.
Методы первого уровня жизненно необходимы. Чтобы ставить диагнозы, делать прогнозы и производить прочие действия с данными, нам для начала необходимо знать, что происходило в прошлом. Но это лишь первый этап процесса, а не сам процесс целиком. Правильная интерпретация знаний, полученных на первом аналитическом уровне, поможет вам перейти ко второму.
Уровень 2: диагностические аналитические методы
Что ж, теперь, когда мы разобрались с уровнем 1, нам будет проще понять уровень 2. Предлагаю начать с аналогии. Представьте себе, что вы простудились и болеете уже несколько дней. У вас температура, озноб, кашель, да и в целом вам нехорошо. Вы решаете сходить к врачу. Вы ждете в коридоре, и наконец вас впускают. Врач вас осматривает и заключает: «Ну что же, вы больны». А затем выходит из кабинета и больше не возвращается. И как вам такой прием? Пойдете ли вы к этому врачу в следующий раз? Все, что он сделал, сообщил то, что вам и так известно. Знаете, что это было? Описательный, дескриптивный анализ. Врач смог описать ваши симптомы и констатировать, что вы больны, но не сделал ничего, чтобы вам помочь.
Теперь представьте, что врач вас осматривает, описывает симптомы болезни, а затем задает вам вопросы, чтобы выявить причину проблемы и поставить правильный диагноз. Имея диагноз, он уже может помочь вам справиться с болезнью и почувствовать себя лучше. Это второй уровень аналитики диагностический.
Теперь, когда вы получили наглядное (надеюсь) представление, как первый аналитический уровень может вести ко второму, давайте разберемся со словом «диагностика».
Одно из определений слова «диагностика» «выявление природы заболевания или другой проблемы путем исследования симптомов».
Да, в мире данных и аналитики мы не диагностируем болезни людей или животных, но ставим диагноз тому, что происходит с бизнесом, и пытаемся докопаться до корня проблемы. Еще одно понятие, неразрывно связанное с диагностическим анализом, это инсайт, проникновение в суть данных, понимание движущих сил и причин происходящего. Применение аналитических методов второго уровня жизненно необходимо для успеха стратегии работы с данными. Почему?
Чтобы понять важность диагностики, давайте разберемся, в чем состоит основная цель использования данных и дата-аналитики. Зачем организациям данные и их анализ? Почему они тратят даже не тысячи, а миллионы долларов на работу с информацией? Ответ очевиден. Современный мир стал цифровым, и необходимость дата-аналитики уже не обсуждается организации должны научиться извлекать из нее выгоду. Но что, если сотрудники, отвечающие за работу с данными, не знают, как извлечь из них действительно ценные знания и инсайты? Если они не умеют поставить «диагноз», что за процесс породил те или иные данные, то напоминают доктора, который может лишь констатировать факт болезни. Если организация будет учить сотрудников выявлять причины тех или иных проблем с помощью диагностических методов, у нее будет больше шансов на возврат инвестиций в данные и дата-аналитику.
Еще один ключевой элемент второго уровня аналитики (так же, как и первого) это демократизация данных, то есть стремление организации донести данные до коллектива. Во-первых, что означает полная демократизация? Она предоставляет коллективу свободу эффективного использования всей имеющейся информации. Коллектив состоит из сотрудников с разным образованием и профессиональным опытом: нужно поставить уникальные способности каждого из них на службу организации.
Как и в случае с дескриптивными методами, диагностический уровень аналитики подразумевает использование множества инструментов и компьютерных программ, предназначенных для анализа данных. Часть из них те же, что используются и в описательном анализе: Microsoft Excel, Microsoft Power BI, Qlik и Tableau. Организации прибегают к демократизации данных, чтобы стимулировать сотрудников не только описывать, что происходит, но и находить причины этого.
Ключевое слово здесь «инсайт». Именно проникновение в суть помогает понять, как первый и второй уровни аналитики действуют вместе, и объединить их. Первый уровень описывает, что произошло, и это ведет ко второму уровню, к попыткам разобраться, почему это произошло. Очевидно, что именно второй уровень требует больше всего время- и трудозатрат в мире данных и аналитики. На первом уровне у нас есть сводки, информационные панели, отчеты и наблюдения, а сотрудники благодаря навыкам дата-грамотности могут определить, почему наблюдения говорят нам то, а не другое. Например, почему та или иная тенденция так сильно изменилась по сравнению с предыдущими кварталами? Почему возник сдвиг в той или иной гистограмме? Примеров масса.
Наряду с таким последовательным объединением первого и второго уровней сотрудники должны научиться принимать более обоснованные решения, связанные с данными (учитывая состояние современного цифрового мира, это важно для каждого из нас). Более подробно о таких решениях мы поговорим позже. Развивая у сотрудников способность эффективного использования первых двух уровней аналитических методов, руководители организаций постепенно начинают видеть успехи стратегии использования данных и дата-аналитики.
Уровень 3: предиктивные (предсказательные) аналитические методы
Что приходит вам в голову, когда вы слышите слово «предсказание» или слово «прогноз»? Нострадамус, который предсказал кажется, все на свете? Или ставки на победу в финальном матче? Или вы задумываетесь, какая будет погода на следующей неделе, когда у вас начинается отпуск? Нам многое хотелось бы спрогнозировать и в жизни, и в карьере. И конечно же, попадать при этом в яблочко, достигнув совершенства в составлении прогнозов по какому бы то ни было поводу. То же самое можно сказать и об организациях, которые хотят извлекать выгоду из данных и дата-аналитики.
Чтобы разобраться со следующим шагом в последовательности аналитических действий, давайте вернемся к нашему примеру с врачом. Как вы помните, доктор констатировал, что вы больны, а затем ушел и, строго говоря, ничем вам не помог (вы и сами знаете, что больны). А теперь представим, что доктор не ушел, а сделал следующий шаг и смог диагностировать вашу болезнь и ее причину. Таким образом, он помог вам понять, какие процессы вызвали проблему, а это ведет к поиску возможных путей ее преодоления. Что же делает врач дальше, ответив на вопрос «почему?»? Он рассматривает возможные способы лечения, чтобы вам стало лучше: он прогнозирует, что если вы сделаете А, то за этим последует Б.