Представьте себе крупную торговую компанию, успешно запустившую новый продукт. К запуску готовились долго, но все же сумели принять обоснованное решение, положившись на дата-грамотность сотрудников и всю мощь аналитических методов. Как разные группы сотрудников пришли к окончательному решению? Кто «читал» необходимые данные?
ЧТЕНИЕ ДАННЫХ ОТДЕЛОМ ИССЛЕДОВАНИЙ И РАЗРАБОТОК
Давайте сначала взглянем на отдел исследований и разработок. Его сотрудникам необходимо читать, понимать и использовать очень много данных. В нашем случае команда потратила много времени и сил на сбор внутренних и внешних данных и в итоге, изучив результаты опросов, а также сведения о конкурентах и рыночной ситуации, смогла оценить жизнеспособность нового продукта и другие факторы. Вы и сами понимаете, что при чтении данных и поиске информации, необходимой для принятия решения, сотрудники использовали как дескриптивные, так и диагностические аналитические методы.
ЧТЕНИЕ ДАННЫХ ОТДЕЛОМ МАРКЕТИНГА
Далее давайте рассмотрим действия отдела маркетинга. От сотрудников требовалось разработать маркетинговую стратегию и систему распространения информации о новом продукте. Им пришлось изучить и понять горы данных, полученных от самой компании, а также проанализировать внешние тенденции, связанные с продуктом. Кампании какого рода были успешными в прошлом? А какие провалились? Какие внешние обстоятельства могут повлиять на запуск продукта? Умение использовать как дескриптивные, так и диагностические методы помогло отделу маркетинга сформировать стратегию для успешного запуска продукта.
ЧТЕНИЕ ДАННЫХ ТОП-МЕНЕДЖМЕНТОМ
И наконец, давайте обратимся к высшему руководству к топ-менеджерам, которые принимают окончательное решение о запуске продукта. Для принятия серьезных решений умение читать данные критически важно. Всем известно, что у руководства мало свободного времени, а данных, требующих изучения, очень много. Топ-менеджеры должны уметь быстро читать и оценивать данные, чтобы принимать на их основе правильные решения. В нашем случае команда топ-менеджеров смогла быстро прочесть и проанализировать информацию о новом продукте, чтобы принять обоснованное решение, подкрепленное данными.
Итак, мы видим, что каждый сотрудник организации занимается чтением данных. Но у каждого свой уникальный взгляд на них. Способность воспринимать данные и понимать их необходимая составляющая взвешенного подхода к принятию решений.
Элемент 2: работа с данными
Итак, мы видим, что каждый сотрудник организации занимается чтением данных. Но у каждого свой уникальный взгляд на них. Способность воспринимать данные и понимать их необходимая составляющая взвешенного подхода к принятию решений.
Элемент 2: работа с данными
Иногда нам кажется, что «работа» это плохое, неприятное слово, но на самом деле работа должна быть не менее интересной и захватывающей, чем игра. Работать это значит получать удовольствие и добиваться успеха в том, что нам небезразлично. В мире дата-грамотности работа с данными должна приносить радость, а не быть тяжкой ношей. Ее задача способствовать нашей карьере и помогать двигаться вперед.
Что означает работа с данными (или просто «работа» в целом)? Давайте для начала разберемся с самим понятием «работа», чтобы рассмотреть его в нужном контексте.
Определений такого простого слова масса. Мне нравится такое: работа это «деятельность, заключающаяся в физической или умственной активности ради достижения цели или результата»[20]. Итак, выходит, что работа с данными это действия с данными ради достижения цели или результата. Все, конец главы, мы все поняли да? И все же стоит немного углубиться в тему, чтобы как следует разобраться.
Марк Твен сказал: «Работа и игра это два слова, которые описывают одно и то же, только в разных условиях»[21]. Но работа тоже может приносить удовольствие. Теперь, когда мы понимаем, что значит «работа» (и, следовательно, осознаем, что она может быть не хуже игры), предлагаю перейти к конкретному контексту работе организаций с данными.
Итак, работа организации с данными это некие действия с данными, совершаемые сотрудниками организации для достижения цели или результата. Перейдем к конкретике и рассмотрим, как выглядит работа с данными на разных аналитических уровнях и как она связывает в единое целое различные отделы организации и разные роли ее сотрудников.
В работе с данными на четырех уровнях аналитики есть много общего, но вместе с тем каждый уровень обладает своими уникальными особенностями. Даже в дескриптивной аналитике работа с данными может означать для разных сотрудников и разных подразделений организации совершенно разное. Вы наверняка помните, что дескриптивный анализ это описание того, что уже произошло или происходит в организации прямо сейчас. К описанию происходящего и сводится работа с данными на этом уровне. Строя визуализацию недавней маркетинговой кампании или рассматривая ее, вы работаете с данными. Это происходит постоянно. Вспомните пример из предыдущей главы про Rolls-Royce и авиационные двигатели. Сколько способов работы сотрудников с данными мы обнаруживаем только в этом частном случае? Одни разрабатывали датчики для сбора данных, другие собирали данные, третьи анализировали их для последующего применения. И все эти люди работали с данными.
Второй уровень аналитических методов диагностический, то есть поиск причин того, что было выявлено на дескриптивном уровне, это тоже работа с данными. Пытаясь определить, почему что-то произошло, ища инсайты, раскрывая причины и следствия случившегося, мы работаем с данными. Формулировка вопросов, составление отчетов, проведение анализа это все работа с данными. В каких сферах вам нужны инсайты? Какие важные знания вы хотите получить? Почему проиграла последний матч ваша любимая команда? Или какое снаряжение взять с собой в поход? Вы уже работаете с данными самыми разными способами. Но давайте вернемся к работе организаций с данными и вновь обратимся к примеру с Rolls-Royce и двигателями: зачем собирать данные, если мы не собираемся работать с ними, чтобы почерпнуть важные знания? На тех, кто обрабатывал данные, считанные датчиками, лежала большая ответственность ведь новые знания потенциально могли спасти множество человеческих жизней.
Предиктивный и прескриптивный анализ также подразумевает работу с данными разными способами. Эту работу выполняют разные группы сотрудников от тех, кто отвечает за получение данных, до тех, кто непосредственно занимается их обработкой, делает прогнозы, анализирует (то есть, строго говоря, читает). Работа с данными обычное дело для каждого из нас: мы постоянно этим занимаемся в повседневной жизни.
Если вы болельщик, то часто ли вы пытаетесь выявить тенденции, связанные с выступлениями вашей любимой команды в текущем сезоне, чтобы предсказать, как она сыграет в важном матче? Постоянно! Мы все время работаем с данными, читаем их, чтобы обогатить нашу жизнь, но на что это похоже в рабочей обстановке? Давайте рассмотрим еще один пример.
Предиктивный и прескриптивный анализ также подразумевает работу с данными разными способами. Эту работу выполняют разные группы сотрудников от тех, кто отвечает за получение данных, до тех, кто непосредственно занимается их обработкой, делает прогнозы, анализирует (то есть, строго говоря, читает). Работа с данными обычное дело для каждого из нас: мы постоянно этим занимаемся в повседневной жизни.
Если вы болельщик, то часто ли вы пытаетесь выявить тенденции, связанные с выступлениями вашей любимой команды в текущем сезоне, чтобы предсказать, как она сыграет в важном матче? Постоянно! Мы все время работаем с данными, читаем их, чтобы обогатить нашу жизнь, но на что это похоже в рабочей обстановке? Давайте рассмотрим еще один пример.
Представьте себе, что вы работаете в крупной организации, которая хочет запустить новую инновационную маркетинговую кампанию: ничего подобного ваша организация еще не делала. Эта кампания долго и с огромным трудом разрабатывалась, а из-за ее беспрецедентной сложности многие сотрудники очень нервничают. Как они будут работать с данными в такой ситуации? Что они будут стараться обнаружить? Какова роль дата-грамотности? Давайте рассмотрим, как разные группы сотрудников работают с данными, чтобы запустить эту кампанию и проанализировать ее успешность.
РАБОТА С ДАННЫМИ: IT-ОТДЕЛ
Для начала возьмем IT-специалистов. Нужно ли им работать с данными, чтобы помочь в запуске подобной кампании? Разумеется! В рамках этой конкретной кампании IT-отдел должен был и получить, и сделать доступными данные, необходимые для принятия обоснованных решений. Команда работала с данными самыми различными способами. В результате конечные пользователи получили возможность анализировать и использовать данные для обеспечения успеха кампании.
РАБОТА С ДАННЫМИ: ОТДЕЛ МАРКЕТИНГА
Далее рассмотрим саму команду маркетологов. Требуется ли от них работа с данными? Конечно! Маркетологи должны работать с данными, чтобы провести описательный анализ. Им нужно определить тенденции и закономерности в данных, касающихся как самой организации, так и рынка в целом. Именно данные помогут им составить прогноз успешности кампании.
РАБОТА С ДАННЫМИ: ОТДЕЛ ПРОДАЖ
Теперь обратимся к отделу продаж. Команда «продажников» находится в авангарде: именно она непосредственно взаимодействует с существующими и потенциальными клиентами. Отдел продаж отвечает на вопросы и проводит исследования для кампании, изучает новые продукты, доступные для клиентов организации, и решает, как использовать всю эту информацию для достижения успеха. «Продажники» должны уметь эффективно обращаться с данными, лежащими в основе маркетинговой кампании, а другие подразделения организации должны делиться с ними теми данными, которые есть у них.
РАБОТА С ДАННЫМИ: ТОП-МЕНЕДЖМЕНТ
И наконец, топ-менеджеры. Им непременно нужно работать с данными при запуске новой кампании: они никогда не занимались ничем подобным, это беспрецедентная кампания. Топ-менеджеры получают отчеты и другую информацию, что помогает им принимать решения, подкрепленные данными (обратите внимание: наша мозаика четыре уровня аналитических методов успешно складывается!). Получив данные, руководство начинает с ними работать. Естественно, это необходимо для успешного запуска кампании.
В целом, как мы видим, каждому сотруднику организации нужно работать с данными, и уметь это должен каждый, кто принимает какие бы то ни было решения. Но, как уже было замечено выше, «работа» зачастую воспринимается как нечто неприятное, а в случае с данными и дата-аналитикой это особенно верно: многим кажется, что это программирование, статистика и прочие скучные вещи. Но вспомним Марка Твена: работа может и должна быть похожа на игру. Работа, требующая дата-грамотности, необходима для успеха организаций, для достижения ее целей, и именно она заставляет крутиться шестеренки бизнеса. Совершенствуя навыки обращения с данными (не забывайте, что мы все так или иначе работаем с ними, даже не осознавая этого) и сохраняя при этом позитивный настрой, вы поймете, что работа с данными помогает принимать более обоснованные решения не только профессиональные, но и бытовые: при выборе профессии, при покупке дома или машины и т. д. Дата-грамотность помогает нам не теряться и не расстраиваться при столкновении с информацией и технологиями, а ставить их себе на службу. Работа с данными это наши повседневные обязанности.