Перелом. Часть 3 - Суханов Сергей Владимирович 27 стр.


В общем, подобными дополнениями скорость работы управляющей ЭВМ повысилась. Но были и другие доработки. Например - сетевая шина. Вначале, когда только примеривались к цифровому управлению лабораторным оборудованием, все исследовали и отлаживали на одной установке, и времени на опрос и установку регистров устройства хватало. Когда же начали работы с несколькими установками, стали возникать проблемы - если опрашивать еще как-то получалось, то на расчеты - сравнения, подгрузку данных с перфоленты - времени уже стало не хватать. Тогда разработали отдельную схему опроса устройств - процессор заносил в его регистры номер устройства, количество регистров и адрес в памяти, по которому размещались данные, и уже это устройство отправляло их последовательно в лабораторную установку. Почти сразу добавили начальный регистр, а то оказалось, что далеко не всегда требовалось заносить значения во все регистры лабораторной установки. Потом добавили битовую маску, чтобы можно было пропускать какие-то регистры - скажем, занести значения только в первый, третий и четвертый регистры. Потом добавили флаг окончания обработки пакетной передачи, а то высчитывать по тактам время передачи оказалось не очень удобным. То же самое - и в обратном направлении.

Так что шина связи с установками развивалась - собственно, это была почти что сеть, только с мастер-хостом, который и управлял всей деятельностью сети - лабораторные установки могли выдать данные в сеть только после получения от хоста своего номера и команды "выдать данные". И это был не предел улучшений. Так, в августе начали мудрить с прерываниями от таймера, а то высчитывать время по количеству исполненных команд - это сложновато, приходилось и вставлять пустые циклы (а при этом надо учесть и количество тактов на выполнение команд для расчета длительности самого цикла !), и прерывать расчетные циклы (а при этом часть времени цикла приходилось тратить на проверку - а не пора ли его прервать, чтобы успеть опросить очередное устройство !). Так что с таймером была надежда, что как минимум от этих расчетов удастся избавиться - занес в регистры таймера адрес для перехода, количество тиков, запустил таймер - и спокойно считай что там надо или выводи на печать, а когда таймер дотикает - он сохранит текущий адрес операций и поместит в регистр команд сохраненный в таймере адрес - и начнется обработка прерывания по таймеру - тут еще требовался флаг с признаком, что находимся в обработчике прерывания, чтобы при возврате из него восстановить предыдущую последовательность - а это снова команды восстановления регистров и передачи управления. Да и с вложенными таймерами надо было что-то делать - но тут я полет мысли уже остановил - получалась сложная схема управления прерываниями, а над ней работал отдельный коллектив. Так что пока просто ограничим количество одновременно поддерживаемых установок - и все, для того, чтобы попробовать новые технологии этого вполне хватит. И так уже память нарастили до двух килобайт, заменив блоки памяти на дискретных конденсаторах блоками памяти уже на микросхемах по 64 бита каждая. И по расчетам, если ограничиться только операциями считывания с перфоленты, отправки данных в установки, считывания оттуда показателей, сравнение и отправку других показателей при необходимости, а также вывод на перфоленту или на цифровое печатающее устройство, то даже эта ЭВМ могла поддерживать более тридцати установок, пусть и без расчета графиков изменения значений - этим пока могут заниматься и аналоговые вычислители самих установок. Ну а если с расчетом графиков - то штук пять, не более. Но вот если поставить ЭВМ хотя бы следующего поколения, то она сможет рассчитывать графики уже для двадцати лабораторных установок. И, наверное, уже зимой исследователи получат новую машину.



ГЛАВА 12

.


Причем это была не единственная вычислительная машина, что работала на управляющих задачах. Так, у нас уже эксплуатировалась в тестовом режиме УВМ токарного станка - она днями и ночами вытачивала разные оси и болты - мы отлаживали способы управления с помощью вычислительной техники, а то автоматы и полуавтоматы, работающие по шаблонам и механическим блокам управления, были, конечно, классной штукой, но уж слишком часто их приходилось налаживать - подсточился резец - переналадка, расширился металл от нагрева - снова переналадка, а уж если промялся шаблон, или поверхности деталей в механизме отслеживания траектории - совсем труба - ведь траекторию, снимаемую с шаблона, надо передавать на резец, а на нем действуют большие нагрузки резания - следовательно, эти нагрузки должны выдерживаться и всей системой передачи траектории. Так что если для черновой обточки эти механизмы еще годились, то для попадания в допуски менее трети миллиметра все-равно требовался человек.

Ну, мы-то тем не менее широко использовали автоматы - они экономили нам уже тысячи человеко-часов в сутки - обточка осей, снарядов, зубчатых колес, картеров - все это выполнялось полуавтоматами или автоматами, пусть зачастую и в черновой обработке - человеку оставалось снять уже полмиллиметра максимум, а не десятки. А в последних версиях станков-автоматов мы отлавливали уже десятые доли миллиметра - помассивнее суппорты и направляющие, чтобы уменьшить вибрации и прогибы, дополнительные направляющие, параллельные основным, чтобы этим плечом обеспечить жесткость, дополнительные опорные поверхности, закалка кулачков и напыление износостойких металлических и керамических покрытий - народ понемногу навострялся проектировать системы автоматической обработки металлов.

Собственно, в автоматизации металлообработки мы были далеко не первыми и уж тем более не открыли Америку, где эти работы начались еще в 19м веке - сначала в середине века там изобрели револьверный станок, который позволял быстро менять режущий инструмент, затем в 70х годах появился первый токарный автомат - управление в нем выполнялось с помощью вращающегося вала, на котором были насажены кулачки с фасонными поверхностями. Затем станки-автоматы стали там появляться как грибы после дождя - сверлильные, для накатки резьбы, прорезания шлицев, фрезерные. В 90х годах появились и многошпиндельные станки. Так что неудивительно, что вскоре Америка отняла у Англии прозвище мировой фабрики.

СССР тоже активно развивал это направление. В первую пятилетку страна сосредоточилась на обычных станках, и если в 1927 году было выпущено 18 тысяч металлорежущих станков, то в 1932 - уже 46 тысяч, в основном универсальных - сорока типоразмеров. В этом же году прошли Первая конференция работников конструкторских бюро станкостроителей, а в июле -- Первое Всесоюзное совещание работников станкостроительной промышленности, обсудившие типаж станков на 1932-1936 года и ряд предложений по развитию станкостроения в СССР. В июне 1933 года было издано постановление "О дальнейшем развертывании станкостроительной промышленности", где говорилось в том числе "Начать с конца 1933 г. производство одношпиндельных автоматов и полуавтоматов, а в 1934 г. - многошпиндельных автоматов.". В 1933 на Горьковском заводе фрезерных станков начали выпускать копировально-фрезерные станки, в 1934 на Московском автозаводе стали использовать многошпиндельный сверлильный станок, которым просверливали 24 отверстия в заднем мосту автомобиля, Московский завод имени Орджоникидзе начал выпускать токарные многорезцовые полуавтоматы модели 116. Последние обрабатывали детали диаметром до 200 и длиной до 1200 миллиметров.

В СССР разрабатывались и целые автоматические линии. ЭНИИМС - Экспериментальный научно-исследовательский институт металлорежущих станков - разработал свои первые линии еще в 1936 - примеривались к новой технологии. В 1937-40 годах на СТЗ Иван Петрович Иночкин разрабатывал автоматические линии. Так, его линия по обработке ступиц для трактора СТЗ-НАТИ была запущена в опытную эксплуатацию 25 ноября 1939 года, существенно ускорив работы - если раньше семеро рабочих выдавали в час 25 обработанных ступиц, то с линией двое рабочих делали 75. Позднее он разработал линию по обработке чугунного корпуса уплотнителя - она состояла из четырех агрегатных станков и того самого станка модели 116. Как и в первой линии, перемещение и закрепление деталей в станках выполнялось автоматически с помощью манипуляторов, разработанных изобретателем. Заготовки шли к станкам по наклонным ручьям, подхватывали цангами, обтачивались, шли дальше, разворачивались, снова подхватывались и обтачивались начисто. А на 1м ГПЗ были созданы линии для токарной обработки и шлифования деталей подшипников.

В 1940 выпускали уже 58 тысяч станков 320 типоразмеров.

Мы также пошли по этому пути. Для начала, потренироваться, мы создали станок по обточке валов. Ну - не то чтобы создали - модернизировали один из универсальных токарных - добавили электромуфту для включения-выключения главного хода, вал с кулачками - и схему управления от него двигателем и муфтой. Данная модель только делала несколько проточек заготовки до нужного размера, который определялся лишь количеством проточек - один оборот вала с кулачками задавал одну проточку, в конце, после отвода суппорта, кулачок толкал храповый механизм, который который сдвигал суппорт на следующую глубину проточки. И по новой - количество проточек определялось отдельным храповым механизмом, также сдвигавшимся управляющим кулачком. Смены скоростей резания и подачи не выполнялось - эти значения выставлялись рабочим и затем не менялись. Поначалу мы протачивали только одну ступицу вала. Затем добавили проточку по всей длине - тут потребовалось добавить кулачки для ограничения хода в зависимости от номера проточки. Затем таким же образом доработали еще несколько станков - и они начали вытачивать валы круглыми сутками, причем обслуживанием занимались только два рабочих вместо десяти - установка-снятие деталей, проверка размеров, смена инструмента - эти работы выполнялись вручную, но сама проточка шла автоматически. Из-за неточностей изготовления кулачка, нестабильности электропитания, постепенного износа инструмента поперечный сдвиг и последующая обработка шли на величину с некоторым допуском, поэтому оставшийся металл снимали рабочие на отдельных станках. Но - не на всех участках деталей, а только на сопрягаемых с другими деталями поверхностях.

Мы также пошли по этому пути. Для начала, потренироваться, мы создали станок по обточке валов. Ну - не то чтобы создали - модернизировали один из универсальных токарных - добавили электромуфту для включения-выключения главного хода, вал с кулачками - и схему управления от него двигателем и муфтой. Данная модель только делала несколько проточек заготовки до нужного размера, который определялся лишь количеством проточек - один оборот вала с кулачками задавал одну проточку, в конце, после отвода суппорта, кулачок толкал храповый механизм, который который сдвигал суппорт на следующую глубину проточки. И по новой - количество проточек определялось отдельным храповым механизмом, также сдвигавшимся управляющим кулачком. Смены скоростей резания и подачи не выполнялось - эти значения выставлялись рабочим и затем не менялись. Поначалу мы протачивали только одну ступицу вала. Затем добавили проточку по всей длине - тут потребовалось добавить кулачки для ограничения хода в зависимости от номера проточки. Затем таким же образом доработали еще несколько станков - и они начали вытачивать валы круглыми сутками, причем обслуживанием занимались только два рабочих вместо десяти - установка-снятие деталей, проверка размеров, смена инструмента - эти работы выполнялись вручную, но сама проточка шла автоматически. Из-за неточностей изготовления кулачка, нестабильности электропитания, постепенного износа инструмента поперечный сдвиг и последующая обработка шли на величину с некоторым допуском, поэтому оставшийся металл снимали рабочие на отдельных станках. Но - не на всех участках деталей, а только на сопрягаемых с другими деталями поверхностях.

Назад Дальше