Элементы: замечательный сон профессора Менделеева - Аркадий Искандерович Курамшин 2 стр.


Казалось, благодаря водороду, воздухоплавание и летательные аппараты легче воздуха ждет большое будущее. Особые надежды на такие аппараты стали возлагаться с заменой мягких оболочек воздушных шаров на оболочки, усиленные внутренними каркасами. Изобретателем и энтузиастом создания воздухоплавательного парка из таких машин был немецкий граф Фердинанд фон Цеппелин, в честь которого такие воздушные суда стали называть цеппелинами (нам они известны как дирижабли). Золотой век дирижаблей пришелся на 19201930-е годы, когда они использовались и для перевозки грузов, и людей, в том числе и через Атлантический океан. Тем не менее, водород, обеспечил не только расцвету эры управляемых шарльеров, но и их закату главной проблемой водорода является его реакционная способность и высокая горючесть. Из-за того, что наполнявший оболочки воздушных шаров водород загорался, часто случались аварии, а после 6 мая 1937 года, когда возгорание цеппелина «Гинденбург», унесшее жизни 36 человек, было заснято на киноплёнку (справедливости ради, были аварии дирижаблей и с большим количеством жертв, но они не попадали в кинохронику), люди всерьез задумались о безопасности перемещения по воздуху на шаре, наполненном водородом. К счастью, дальнейший прогресс авиации позволил безболезненно прекратить использование дирижаблей. Тем не менее, водород и сейчас не теряет своего значения для средств передвижения. Правда, в наши дни водород привлекает инженеров уже не из-за небольшой плотности, а из-за того, что он сгорает с выделением большого количества энергии. В двигателях многих ракет НАСА топливом является сжиженный водород, который сгорает в чистом кислороде.

Ещё одна тенденция нашего времени попытка рассматривать водород как альтернативу другим видам топлива, в первую очередь получаемым с помощью переработки нефти. Конечно, с точки зрения экологии водород выглядит более привлекательным, чем бензин или дизельное топливо хотя бы потому, что он сгорает только с образованием воды, не давая парниковых газов. Однако, с точки зрения инженера или логиста, переход на водородное топливо не так просто. Наиболее вероятный способ использовать водород не сжигать его (это может привести к взрыву), а применять как топливо для электрохимической реакции, выделяющийся в результате которой электрический ток и будет приводить в действие двигатель автомобиля. Несмотря на то, что уже сообщается о создании работающих прототипов водородных автомобилей, есть сомнения в том, что в будущем их производство станет массовым. Во-первых, для обеспечения работы таких машин потребуется сеть «водородных заправок», а со времен аварии Гинденбурга водород ни стал не менее взрывчатым, ни менее огнеопасным. Еще одна проблема в том, что из литра бензина можно получить в три раза больше полезной энергии, чем из литра сжиженного водорода, и, очевидно, понятно, что для сжижения легкого газообразного водорода энергию нужно потратить. Нельзя не упомянуть и то, что в настоящее время у нас нет и достаточно эффективных способов получения водорода его получают либо из углеводородов (попутно при этом образуются парниковые газы), либо электролизом воды, а электричество для процесса тоже может быть получено с помощью «грязных технологий».

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Но, даже если в будущем нас не ждёт эра водородных автомобилей, водород может стать топливом для более энергоёмкого процесса управляемого термоядерного синтеза. Скорее всего, разработки промышленных термоядерных реакторов для получения электроэнергии придётся ждать еще десятилетия, но термоядерные процессы процесс слияния атомов водорода в гелий, точно такие же, которые протекают в звезде по имени Солнце и в других звездах, с именами и без, позволит добиться получения наиболее чистой и безотходной электроэнергии. И, какое бы применение мы уже не нашли водороду, и, какое применение мы еще найдем для него, он навсегда останется элементом  1, тем элементом, с которого начинается и Периодическая система, и началась Вселенная.



2. Гелий


С гелием, по крайней мере с шариками, наполненными гелием, знакомы практически все. Правда всякий раз, когда я вижу, как на мероприятиях или праздниках пускают в небо шары, надутые гелием, я чувствую себя слегка опечаленным. Это происходит не из-за того, что я не люблю веселиться (веселиться я даже очень люблю) и даже не из-за того, что меня волнует судьба оболочки шара. Когда-нибудь гелий «сдуется», оболочка упадёт и пополнит и без того немалое количество полимерного мусора, накапливающегося в окружающей среде (хотя, людям, запускающим шарики в небеса, стоило бы задумываться и об этом).


Когда я вижу летящие шарики, надутые гелием, меня, как химика, заботит то, что с ними мы практически навсегда теряем ценный ресурс гелий. Вероятно, корни чувств, которые я испытываю при этом лежат в прошлом в 19921995 году в аспирантуре я с помощью газожидкостной хроматографии изучал кинетику реакций, газом-носителем для хроматографа был гелий. Когда баллоны с гелием заканчивались, работа прекращалась на длительный срок до появления средств на новую порцию гелия с тех пор я привык бережно относиться к этому инертному газу.

Гелий второй по распространенности элемент во Вселенной, но здесь, на Земле он редкий гость. Многие предполагают, что гелий получают переработкой воздуха, но на самом деле этот инертный газ добывают из пробуренных в земле скважин. Гелий в следовых количествах входит в состав природного газа, в некоторых месторождениях его больше, в некоторых меньше, но в любом случае гелий добывают из природного газа с помощью низкотемпературной фракционной перегонки (разделения при низкой температуре). Возникает вопрос как же гелий мог оказаться под землей и смешаться с природным газом. Ответ в том, что в отличие практически от всех остальных химических элементов Периодической системы, которые мы можем найти в земной коре, гелий на Земле появился много позже образования нашей планеты.

Гелий образуется в ходе естественного радиоактивного распада таких элементов, как уран и торий. Эти тяжёлые элементы образовались до формирования земной коры, их ядра не стабильны, и очень медленно распадаются. Оба изотопа урана уран-235 и уран-238 подвергаются α-распаду при самопроизвольном разрушении их ядер выделяется α-частица, которая представляет ничто иное, как ядро атома гелия. Сам атом гелия рождается после того, как ядро захватывает электроны.

Распад изотопов урана протекает исключительно медленно, период полураспада (время, за которое распадается половина радиоактивных атомов) для урана-238 составляет 4,4 миллиарда лет, а для урана-235 0,7 миллиардов лет. Геологический возраст Земли составляет 4,54 миллиарда лет, и можно сказать, что гелий непрерывно образуется в земной коре с момента образования нашей планеты. Большая часть гелия просачивается через поры земной коры в атмосферу, медленно покидая ее, но, к счастью, часть гелия в подземных резервуарах смешивается с природным газом и может быть выделена из него.

В космосе все совсем иначе. Солнце состоит на 73,5 % из водорода, 24,9 % из гелия, оставшаяся масса приходится на более тяжёлые элементы. Солнце, как и другие звезды, представляют собой естественные термоядерные реакторы, в которых при высоких температурах протоны, представляющие собой ядра водорода, сливаются с образованием гелия. В результате слияния более легких ядер и образования более тяжелых элементов выделяется огромное количество энергии, и этот способ ее получения, как упоминалось в предыдущей главе, хотят воспроизвести на Земле.

Раз уж гелий составляет почти четверть от массы Солнца, неудивительно, что его удалось обнаружить на Солнце полтора века назад. Скорее, более удивительно то, что на Земле его смогли найти только через четверть века после того, как его нашли в космосе.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

В космосе все совсем иначе. Солнце состоит на 73,5 % из водорода, 24,9 % из гелия, оставшаяся масса приходится на более тяжёлые элементы. Солнце, как и другие звезды, представляют собой естественные термоядерные реакторы, в которых при высоких температурах протоны, представляющие собой ядра водорода, сливаются с образованием гелия. В результате слияния более легких ядер и образования более тяжелых элементов выделяется огромное количество энергии, и этот способ ее получения, как упоминалось в предыдущей главе, хотят воспроизвести на Земле.

Раз уж гелий составляет почти четверть от массы Солнца, неудивительно, что его удалось обнаружить на Солнце полтора века назад. Скорее, более удивительно то, что на Земле его смогли найти только через четверть века после того, как его нашли в космосе.

С конца восемнадцатого века, с появлением такого сильного окислителя, как хлорат калия (бертолетова соль) стало понятно, что некоторые химические элементы могут окрашивать пламя в определенные цвета. Это открытие позволило создать и пиротехнические составы, в которых, например, зеленый цвет создается солями бария или бора, а красный лития или стронция. Помимо создания индустрии красочных фейерверков окраска элементами пламени позволила научиться идентифицировать элементы по цвету, в который они окрашивают пламя, позже в результате совместной работы Бунзена и Кирхгоффа появился прибор под названием спектроскоп, в котором цвет, создаваемый элементом в пламени, с помощью призмы (сейчас с помощью дифракционной решетки) расщеплялся на спектр совокупность тонких и чётких окрашенных линий. Набор таких линий оказался строго индивидуальным для каждого элемента, как отпечатки пальцев индивидуальны для человека. С той поры идентификацию известных и открытие новых элементов стали проводить уже не просто по цвету, а по набору его спектральных линий (с помощью спектроскопа Бунзен и Кирхгоф смогли открыть такие элементы, как рубидий и цезий).

В какой-то момент ученые решили, что спектроскоп может пригодиться не только на Земле и попробовали использовать этот прибор для изучения химического состава Солнца. Такой подход позволил обнаружить на Солнце натрий, магний, кальций и железо. В 1868 году независимо друг от друга француз Пьер Жансен англичанин Норман Локьер, независимо друг от друга обнаружили в солнечном спектре чёткие линии, которые не соответствовали ни одному из известных в то время металлов (в том, что это был именно металл, ни у Жансена, ни у Локьера сомнений не было). Локьер предложил для этого «металла» название «гелий» в честь древнегреческого бога Солнца Гелиоса. В течение двух десятков лет гелий так и не был обнаружен на Земле, и Локьер стал становиться мишенью для насмешек. Однако в 1895 году Уильям Рамзай обнаружил гелий в газе, полученном при обработке кислотой урансодержащего минерала клевеита. В спектре газа была обнаружена та же ярко-жёлтая линия, которую Жансен и Локьер наблюдали в солнечном спектре. Образец был направлен для дополнительного исследования английскому учёному-спектроскописту Уильяму Круксу, который подтвердил, что наблюдаемая в спектре образца жёлтая линия совпадает с линией D3 гелия, обнаруженного на Солнце. Гелий, образующийся при радиоактивном распаде, поглощался горной породой, и при растворении породы в кислоте высвобождался. Итак, элемент, окрещённый Локьером, был обнаружен на Земле, но оказался не металлом, а крайне инертным газом. И в наши дни, когда элементов в Периодической системе больше, чем во времена Локьера и Рамзая, гелий остается единственным инертным газом, чьё латинское название оканчивается суффиксом «-ium», применяющимся обычно в названиях элементов-металлов.

Назад Дальше