Фраза «только на атомных электростанциях» не случайна один из изотопов технеция, нуклид 99Тс, период полураспада которого составляет около 6 часов, получают специально. С помощью этого нуклида ежегодно проводится около 20 миллионов случаев сцинтилляционной медицинской диагностики. Нуклид 99Тс распадается, испуская гамма-излучение. Врачи вводят в организм пациента образец, содержащий технеций (часто его предварительно успевают связать с определёнными органическими молекулами, которые смогут связаться со строго определёнными тканями или даже органоидами клетки), и с помощью детектора гамма-излучения следят за транспортом и накоплением технеция в организме пациента чтобы определить, какие из его органов в порядке, а какие работают не должным образом. Малые количества технеция, нужные для такой диагностики и его малый период полураспада приводит к тому, что организм пациента получает дозу излучения, сравнимую с эффектом ежегодного рентгенологического исследования лёгких (флюорографии).
44. Рутений
Замок и пряжки кожаного чехла, в котором хранится кубок Чемпионата мира по футболу 2018 года, проводившегося в России, сделаны из «самого русского» металла рутения. Это не только единственный существующий в земной коре элемент, официально открытый в России, но и его название происходит от латинского Ruthenia Русь, Россия.
Рутений был открыт в Казани, так что можно сказать, что для меня, коренного казанца, к тому же казанского химика, этот металл ближе вдвойне. Однажды, десять лет назад, беседуя в твиттере, я даже не постеснялся указать редакции журнала Nature Chemistry, что они не правы, и они дважды извинились за неправильную информацию в редакторской колонке про рутений и за стереотипы в подборе для неё иллюстраций. Колонку, размещённую в интернете они даже исправили (наполовину) указали, что источником для открытия рутения были уральские руды (в исходном варианте статьи речь шла про сибирские), но картинку матрёшки оставили.
Рутений был открыт профессором Казанского университета Карлом Клаусом в 1844 году. Клаус выделил рутений в виде металла из уральской платиновой руды и указал на сходство между тройками элементов рутений родий палладий и осмий иридий платина. Название «рутений» Клаус придумал не сам в 1828 году работавший в России Готфрид Озанн предложил это название для своего открытия, который он по ошибке принял за новый элемент, Клаус, удостоверившись в том, что он действительно открыл новый элемент, дал ему название, предложенное Озанном. В 1844 году Клаус опубликовал о новом элементе большую статью «Химические исследования остатков Уральской платиновой руды и металла рутения» в «Учёных записках Казанского университета», журнале, который издаётся до нашего времени.
Как и другие металлы троек рутений родий палладий и осмий иридий платина, рутений мало распространён. По содержанию в земной коре он находится на 74-м месте, ежегодно добывается около 12 тонн рутения, а мировые резервные запасы этого металла оцениваются в 5000 тонн. Чаще всего рутений извлекается из руд совместно с другими металлами платиновой группы, а вот его содержание в разных платиновых рудах различается в рудах, извлекаемых в Южной Африке, содержится до 11 % рутения, а вот в уральских рудах металлов платиновых групп рутения только 2 %.
Футбольный кубок, как и ювелирная продукция для рутения только хобби. Большую часть времени рутений проводит в химических лабораториях и предприятиях в области тонкого химического синтеза. С 1960-х годов начались ставшие успешными систематические попытки заставить металлы платиновой группы катализировать превращения органических и неорганических веществ. В начале в эффективности вперёд вырвались платина с палладием, которые показали себя успешными в ускорении химических реакций, будучи просто металлами, благодаря чему значительные количества этих металлов стали востребованы нефтехимическими комплексами, в которых эти металлы ускоряют процессы химической переработки нефти, и автопроизводителями платиновый катализатор очистки выхлопных газов способствует доокислению угарного газа СО в менее опасный углекислый СО2. Металлический рутений не мог похвастаться столь высокой эффективностью, и поэтому объектом исследования стали его соединения. Результатами этих исследований навскидку можно назвать пару Нобелевских Премий. В 2001 году Нобелевским лауреатом стал Рёдзи Ноёри, получивший её за «за их работу над хиральными катализаторами реакций присоединения водорода». Катализаторы Ноёри (комплексы рутения с оптически активными β-аминоспиртами и производными 1,2-диаминов) применяются в процессах получения практически чистого (1R,2S,5R) ментола и исходных веществ для синтеза полиамидных волокон. Комплексы Граббса, которые применяются в получении непредельных органических соединений с помощью реакций метатезиса (за исследования в области метатезиса Нобелевская Премия по химии была присуждена в 2005 году), тоже представляют собой производные рутения.
Металлический рутений не зарекомендовал себя как катализатор, но как металл тоже работает твёрдость «российского элемента» позволяет использовать его в сплавах с другими металлами платиновой группы, из которых делают износоустойчивые электрические контакты. Около половины производимого рутения используется в другой области электротехники из диоксида рутения и рутенатов висмута производят детали для тонкоплёночных резисторов элементов сопротивления в электросхемах. Если вы ещё не растеряли навык письма перьевой ручкой, есть шанс, что вы обладатель небольшого количества рутения. Золочёное перо выпускающихся с 1944 года ручек серии Parker 51 с маркировкой «RU» на 96.2 % состоят из рутения, на 3.8 % из иридия.
Как и его близкий родственник железо, рутений может образовывать различные оксиды. Один из таких оксидов рутениевый красный, применяется для подкрашивания отрицательно заряженных биомолекул, например нуклеиновых кислот, перед изучением биологических образцов с помощью микроскопии. Некоторые комплексы рутения изучаются как потенциальные противоопухолевые препараты.
45. Родий
С точки зрения строения атомного ядра родий можно считать уникальным это единственный относительно тяжелый химический элемент, представленный в Земной коре единственным устойчивым нуклидом 103Rh. Радиоактивные изотопы родия также существуют, но период полураспада самого долгоживущего из них 101Rh всего три года и четыре месяца, поэтому они не накапливаются в земной коре и можно говорить, что родий моноизотопный.
Родий металл серебристо-белого цвета, который, как и все металлы платиновой группы (рутений-родий-палладий объединены в так называемую «малую платиновую группу») отличается крайне низкой активностью. Царская водка (смесь соляной и азотной кислот), которая быстро и охотно растворяет золото, реагирует с родием только при заметном нагревании. Именно с помощью царской водки родий и был отделён от платины (платина с ней не реагирует совсем). Первооткрывателем родия является Уильям Хайд Волластон. Он выделил этот металл из платиновой руды, доставленной в Британию контрабандой с территории современной Колумбии. Эту руду в канун Рождества 1802 года приобрели Волластон и его друг и коллега Смитсон Теннант.
Контрабандная руда оказалась весьма ценной для обоих ученых. Её исследования позволили получить не только окрашенный в розовый цвет раствор хлорида элемента, который Волластон назвал родием (от греческого «розос» роза), но и другие находки. Волластон открыл в этом образце ещё и палладий, а Теннант осмий и иридий.
Чаще всего мы сталкиваемся с родием, работающим в каталитической системе дожигания выхлопных газов от автомобильных двигателей внутреннего сгорания. Правда, в этом случае наш контакт с этим элементом весьма опосредован каталитическая система, которая служит для обеспечения полного сгорания некоторых небезопасных веществ, покидающих выхлопную трубу, расположена глубоко внутри автомобиля, и к тем деталям, которые можно обслужить своими силами, не относится.
Помимо родия катализаторами дожигания выступают также платина и палладий, но их значение немного различается. Если палладий может выполнять работу платины и наоборот ускорять окисление угарного газа СО в углекислый СО2, то родий выполняет тот трюк, на который ни платина, ни палладий неспособны. Его мишень оксиды азота (их часто обозначают как NOx), которые в присутствии аммиака и при посредстве родия разрушают на молекулярные азот и кислород (или воду). Родий работает с производными азота и в другом процессе до сих пор не существует более эффективного катализатора окисления аммиака воздухом (эта реакция важна для производства азотной кислоты и нитратов). Ежегодно из руд извлекается не более 30 тонн родия, поэтому и отслужившие своё системы дожигания выхлопных газов, и катализаторы сжигания аммиака подвергаются вторичной переработке, и извлечённый из них родий заново пускают в дело.
Ещё один процесс, в котором родий применяется как катализатор получение уксусной кислоты в результате реакции монооксида углерода (СО) с метиловым спиртом (СН3ОН). В 1960-е годы родий заменил в этом процессе «соседа сверху» кобальт, сделав процесс более эффективным и протекающим с меньшим количеством побочных продуктов. С помощью родиевых катализаторов до недавнего времени в мире производили около пяти миллионов тонн уксусной кислоты, однако в последнее время на смену родию приходит его «сосед снизу» иридий, делающий получение уксусной кислоты еще более эффективным.
Помимо родия катализаторами дожигания выступают также платина и палладий, но их значение немного различается. Если палладий может выполнять работу платины и наоборот ускорять окисление угарного газа СО в углекислый СО2, то родий выполняет тот трюк, на который ни платина, ни палладий неспособны. Его мишень оксиды азота (их часто обозначают как NOx), которые в присутствии аммиака и при посредстве родия разрушают на молекулярные азот и кислород (или воду). Родий работает с производными азота и в другом процессе до сих пор не существует более эффективного катализатора окисления аммиака воздухом (эта реакция важна для производства азотной кислоты и нитратов). Ежегодно из руд извлекается не более 30 тонн родия, поэтому и отслужившие своё системы дожигания выхлопных газов, и катализаторы сжигания аммиака подвергаются вторичной переработке, и извлечённый из них родий заново пускают в дело.
Ещё один процесс, в котором родий применяется как катализатор получение уксусной кислоты в результате реакции монооксида углерода (СО) с метиловым спиртом (СН3ОН). В 1960-е годы родий заменил в этом процессе «соседа сверху» кобальт, сделав процесс более эффективным и протекающим с меньшим количеством побочных продуктов. С помощью родиевых катализаторов до недавнего времени в мире производили около пяти миллионов тонн уксусной кислоты, однако в последнее время на смену родию приходит его «сосед снизу» иридий, делающий получение уксусной кислоты еще более эффективным.