В 1898 году Рамзай с Моррисом Траверсом поставили удачный эксперимент они позволили твёрдому аргону, окружённому сжиженным воздухом, медленно испаряться при пониженном давлении, отбирая фракцию, первой переходящую в газообразное состояние. Отобранную фракцию поместили в атомный спектрометр, и, как записал в дневнике Траверс: « малиновое свечение в трубке рассказывало свою собственную историю, оно было зрелищем, от которого было сложно оторваться».
Популярный русскоязычный анекдот говорит, что Рамзай тут же телефонировал своему коллеге, лорду Рэлею, и между ними произошёл следующий диалог:
А мы тут с Траверсом новый инертный газ открыли
Опять аргон, наверное?
Первым инертным газом, который был открыт на Земле, был аргон он был выделен в 1894 году, в 1895 был получен первый «земной» образец гелия, и оказалось, что «солнечный металл» совсем не металл (см. главу 2). В какой-то момент Сэр Уильям Рамзай осознал, что, если взглянуть на его находки через призму Периодического закона коллеги Менделеева, получается, что он нашел первый и третий химический элементы новой группы. Чтобы доказать обнаружение нового класса химических элементов, попутно подтвердив всесильность и верность Периодического закона Рамзаю нужно было заполнить пустоту между гелием и аргоном.
В 1898 году Рамзай с Моррисом Траверсом поставили удачный эксперимент они позволили твёрдому аргону, окружённому сжиженным воздухом, медленно испаряться при пониженном давлении, отбирая фракцию, первой переходящую в газообразное состояние. Отобранную фракцию поместили в атомный спектрометр, и, как записал в дневнике Траверс: « малиновое свечение в трубке рассказывало свою собственную историю, оно было зрелищем, от которого было сложно оторваться».
Популярный русскоязычный анекдот говорит, что Рамзай тут же телефонировал своему коллеге, лорду Рэлею, и между ними произошёл следующий диалог:
А мы тут с Траверсом новый инертный газ открыли
Опять аргон, наверное?
Нет, не он!
Естественно, такого не было, но реальная история получения элементом 10 имени не менее анекдотично. Тринадцатилетний сын Рамзая предложил назвать новый газ «новумом» (от латинского новый). Рамзай-папа одобрил идею Рамзая-сына, но решил, что греческое слово «неон» будет благозвучнее. Так, новый элемент занял свое временное положение в Периодической системе (первоначально инертные газы, как элементы, проявляющие «нулевую» валентность, были поставлены в нулевую группу таблицы Менделеева), а Рамзай в 1904 году получил Нобелевскую премию по химии.
Первоначально неон и другие инертные газы казались «неведомыми зверушками» Периодической системы их инертность не давала возможности учёным представить, где же их можно применять. Потребовалось воображение французского химика, инженера и изобретателя Жоржа Клода, который первым догадался посмотреть, что произойдет, если пропускать электрический разряд через неон, находящийся в запаянной стеклянной трубке. Появлявшееся при пропускании тока красное свечение натолкнуло Клода на мысль создать источник света, альтернативный лампам накаливания. Он изготовил несколько таких лама (сейчас мы называем их газоразрядными) и впервые продемонстрировал их на Технической выставке в Париже 11 декабря 1910 года. Демонстрация поразила зрителей, но ни один из них не приобрел ни одной лампы освещать свои дома красным светом люди не были готовы. Однако неудача с быстрой коммерциализацией новых ламп не обескуражила Клода в 1915 году он запатентовал изобретение, а позже, пытаясь все же заработать на нём, понял, что с помощью стеклодува можно превратить трубки в буквы, которые будут светиться. Это предопределило применение неона в 1923 году была организована компания Клод Неон, начавшая продажи неоновой рекламы в Соединённых штатах Первоначально неоновые лампы называли «жидкими огнями», а изготовленные из них вывески горели круглосуточно, завлекая любопытствующих прохожих. Неон получали фракционным сжижением воздуха, и нескольких тонн, ежегодно добываемых в 1920-е годы вполне хватало на нужды рекламы.
Неон не только заставил рекламу светить, он помог раскрыть секреты самого важного из источников света для нашей планеты Солнца. В солнечном ветре (частицах, вырывающихся из Солнца и разлетающихся по Вселенной) содержится два изотопа неона неон-20 и неон-22. Эти же изотопы находятся в лунных скальных породах, что, впрочем, неудивительно миллиарды лет солнечный ветер «обдувал» наш естественный спутник, не имеющий защитной атмосферы, и частицы солнечного ветра попадали на Луну. Удивительно было другое в глубине лунных пород соотношение 22Ne/20Ne было выше, чем у поверхности. Первоначально эти результаты интерпретировались тем, что когда-то Солнце было более активно, чем сейчас, выбрасывая частицы с большей энергией, которым удавалось «глубже зарыться» в породу. Однако изучение пробывшего в космосе два года металлического стекла фрагмента потерпевшего в 2004 году крушение космического Genesis, заставило изменить предположение. Оказалось, что распределение изотопов неона в металлическом стекле такое же, как и в лунной породе сверху больше легкого неона-20, в низлежащем слое неона-22. Поскольку даже теоретически было сложно предположить существенное изменение солнечной активности за два года, не говоря уже про то, что слежение за Солнцем во время полёта Genesis говорило о том, что средняя активность нашего светила не менялась, объяснение различного изотопного содержания на разных глубинах стали объяснять явлением космической эрозии удары микрометеоритов и других частиц просто способствуют удалению части неона с поверхности породы, так что поведение Солнца оказалось более предсказуемым. Жидкий неон также можно использовать в качестве охладителя в криогенных установках, смесь неона и гелия используют как рабочую среду в газовых лазерах, а также неоном разбавляют кислород для работающих на глубине водолазов для предотвращения ряда состояний, известных в общем случае как глубинные или кесонные болезни.
11. Натрий
Когда я был студентом, у нас была доставшаяся от предшественников традиция в майские праздники нагружаться рюкзаками, палатками и спальниками, садится в поезд Казань-Йошкар-Ола и отправляться на 100 километров от Казани праздновать День Химика у марийской реки Юшута в месте, известном как «Большая химическая поляна».
Однажды, на рубеже восьмидесятых и девяностых годов прошлого века, когда старые запреты уходили в прошлое, а новые ещё не появлялись, к поляне, где уже разбили свой лагерь студенты, аспиранты и молодые преподаватели химфака Казанского университета, в сумерки пришвартовалось несколько байдарок, и высадившиеся из них в стиле викингов из современных сериалов бывалые туристы (тм) заявили, что это поляна их, и нам, туристам-салагам, стоит сняться с бивака и найти себе новое место. Нас было больше раза в три, уступать поляну мы не хотели, и в результате переговоров стороны решили, что «места всем хватит», и бывалые туристы уже начали разгружать свои суда. Именно тут у берега оказался наш профорг, который в момент переговоров ходил за валежником, и с криком: «Ну что, начинаем праздновать», бросил что-то в воду. Сумерки марийской лесной реки озарились вспышками, вниз по течению поплыли ярко-жёлтые огоньки, которые не тушила вода, и в свете этих огней байдарки с туристами довольно резво поплыли вверх по течению трюк, для исполнения которого на быстрых реках марийской тайги требуется хорошая физическая подготовка вкупе с резким выбросом адреналина. Так бывалые туристы (тм) познакомились с реакцией между натрием и водой. Дело в том, что традиционным ритуалом Дней химика в те времена было стравливание в речной воде кусочков натрия, оставшихся в лабораториях химфака после очистки растворителей и синтезов. Студенты и аспиранты начинали готовиться к этому «фейерверку» с сентября месяца, и чем выше было пламя, тем более удавшимся считался очередной День химика. От той же традиции и пошла кричалка: «Не хотите быть калекой? Киньте дальше натрий в реку».
Как это часто бывает в химии, металлический натрий опасен, если работать с ним без предосторожности, а его соединения есть на каждой кухне ионы натрия являются важными для жизнедеятельности всех живых организмов. Высокая химическая активность натрия, в частности та самая его способность активно реагировать с водой и другими веществами приводит к тому, что в земной коре натрий встречается только в виде соединений и никогда в свободном виде. Натрий достаточно распространён в Земной коре он составляет 2.6 % от её массы. Наиболее распространёнными соединениями натрия в природе являются хлорид натрия (каменная или поваренная соль) и цеолиты.
Человечество давно применяет соединения натрия во времена палеолита наши предки начали использовать каменную соль, не ставшую ещё поваренной (поваренное искусство еще не появилось), в качестве консерванта охотничьи трофеев. В Древнем Египте появляется первое письменное упоминание о производных натрия появляется иероглиф, который читается как «натар» и обозначает смесь поваренной соли и кристаллической соды (десятиводного карбоната натрия Na2CO3×10H2O). В Египте натар применялся как мыло, а также был обязательной частью составов для бальзамирования и мумификации натар хорошо поглощает воду, а его щелочная среда позволяла истреблять бактерии. Нетрудно заметить, что международное латинское название натрия, равно как и современное его название в русском и ряде других языков восходит к древнеегипетскому термину. Английское название натрия sodium, тоже имеет восточные корни, но уже арабские. В средневековой Европе карбонат натрия использовали для врачевания головной боли, это снадобье называлось «соданум», а этот термин, в свою очередь, происходил от арабского «суда» головная боль. В нашем языке арабский корень остался в названиях различных форм карбонатов натрия сод и даже натриевой щёлочи каустической соды, хотя, конечно, в наши дни последнее название безнадёжно устарело. Именно при пропускании постоянного электрического тока через расплавленную каустическую соду сэр Хэмфри Дэви впервые выделил металлический натрий расплавленной натриевой щёлочи (NaOH). Процесс разрушения веществ с помощью электрического тока получил название «электролиз», и Дэви с его помощью смог получить также и другие активные металлы калий, кальций, магний и барий.
Металлический натрий, как и большинство металлов, серебристо-белый, его легко можно разрезать ножом или столь популярным в наших лабораториях скальпелем. Однако блестящим и серебристым натрий остается недолго он быстро окисляется на воздухе и загорается при контакте с водой, ну а выделяющийся при этом водород, взрываясь, добавляет зрелищу красочности и звуковых эффектов. Способность натрия реагировать с водой применяется в лабораториях для очистки от воды некоторых органических растворителей, просто кипятя растворитель над кусочками натрия (главное, чтобы сам органический растворитель не реагировал с натрием, и воды в нём было не так уже много). Если мы очищаем от воды, например, бензол нам приходится нарезать кусочек натрия на тонкие-тонкие пластинки, а если толуол, такой необходимости нет. В чем причина? Металлический натрий «ловит» воду только поверхностью, а его шинковка увеличивает площадь поверхности, следовательно, увеличивая эффективность реакции. Однако, натрий очень легкоплавкий, его температура плавления равна +98 °C, то есть в растворителях с более высокой температурой кипения (у толуола температура кипения +110.6 °C) кусочки натрия все равно расплавятся и сольются в почти идеально шарообразную каплю натрия, рабочая поверхность которой постоянно будет очищаться. Как и другие свои родственники щелочные металлы, натрий и его соединения можно определить по цвету пламени при внесении соли натрия в бесцветное пламя газовой горелки пламя окрашивается в интенсивный жёлто-оранжевый цвет в интернете можно найти немало красочных роликов-демонстраций на эту тему.