Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - Макс Тегмарк 19 стр.



Рис. 2.11

Группа людей, играющих во фризби  такую подпись к этой фотографии сгенерировала машина, ничего не знающая ни о людях, ни об играх, ни о фризби.


Так же, как мы не вполне понимаем, как учатся наши дети, мы все еще не до конца поняли, как учатся такие нейронные сети и почему они иногда терпят неудачу. Но уже ясно, что они будут очень полезны, и поэтому глубокое обучение стало привлекать инвесторов. Благодаря глубокому обучению сильно изменились подходы к технической реализации компьютерного зрения: от распознавания рукописного текста до анализа видеопотоков в реальном времени и беспилотных автомобилей. Благодаря ему произошла революция в способах преобразовывать с помощью компьютера устную речь в письменный текст и переводить его на другие языки, даже в реальном времени, поэтому мы можем теперь поговорить с персональными цифровыми помощниками, такими как Siri, Google Now или Cortana. Раздражающие головоломки типа CAPTCHA, разгадывая которые мы должны убедить сайт, что мы люди, становятся все труднее, чтобы обогнать технологии машинного обучения. В 2015 году Google DeepMind выпустил систему с искусственным интеллектом, которая с помощью глубокого обучения осваивала десятки различных компьютерных игр примерно так же, как это делает ребенок,  то есть не пользуясь инструкциями, с той единственной разницей, что научалась играть лучше любого человеческого существа.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

В 2016 году та же самая компания выпустила AlphaGo  компьютерную систему, играющую в го, которая при помощи глубокого обучения стала так точно оценивать позиционные преимущества расположения камней на доске, что победила сильнейшего игрока в мире. Этот успех служит положительной обратной связью, привлекая все больше финансирования и все больше талантливой молодежи в исследования искусственного интеллекта, которые приводят к новому успеху.

Мы посвятили эту главу природе интеллекта и его развитию до настоящего времени. Сколько времени потребуется, чтобы машины смогли обойти нас в решении всех когнитивных задач? Мы этого не знаем и должны быть готовы к тому, что ответом окажется никогда. Однако смысл этой главы в том, чтобы мы подготовили себя также и к тому, что это все-таки произойдет, и, не исключено, даже еще при нашей жизни. В конце концов, материя может быть устроена так, что, когда она подчиняется законам физики, она запоминает, вычисляет и учится,  причем материя не обязательно биологической природы. Исследователей искусственного интеллекта часто обвиняют в том, что они слишком много обещают и слишком мало своих обещаний выполняют, но справедливости ради надо заметить, что у многих таких критиков послужной список тоже далеко не безупречен. Некоторые из них просто жонглируют словами, то определяя интеллект как нечто такое, чего компьютеры пока еще не могут, то как нечто такое, что произведет на нас наибольшее впечатление. Компьютеры теперь стали очень хороши или даже превосходны в арифметике, в игре в шахматы, в доказательстве математических теорем, подборе акций, распознавании образов, вождении автомобиля, аркадных играх, го, синтезе речи, преобразовании устной речи в письменную, переводе с языка на язык и диагностике рака, но иной критик лишь презрительно хмыкнет: Конечно же, для этого не нужен настоящий разум!. Он будет продолжать утверждать, что настоящий разум должен добраться до вершин ландшафта Моравеца (рис. 2.2), пока еще не скрывшихся под водой, подобно тем людям в прошлом, которые утверждали, что ни субтитры под картинкой, ни игра в го машине не под силу,  а вода продолжала прибывать.

Исходя их того, что вода будет прибывать еще как минимум некоторое время, можно предположить, что влияние искусственного интеллекта на общество будет расти. Задолго до того как AI достигнет человеческого уровня в решении всех задач, он успеет открыть нам новые увлекательные возможности и задать нам много новых вопросов в самых разных областях, связанных с инфекционными болезнями, законодательными системами, разоружением и созданием новых рабочих мест. Каковы они, и как мы можем лучше подготовиться к ним? Давайте рассмотрим это в следующей главе.

Подведение итогов

 Интеллект, определяемый как способность достигать сложных целей, не может быть измерен одним только IQ, он должен быть представлен спектральной плотностью в соответствии со способностями к достижению любых целей.

 Современный искусственный интеллект имеет тенденцию к узкой специализации, причем каждая система может достигать только очень конкретных целей,  в отличие от интеллекта человека, чрезвычайно широкого.

 Память, вычисление, обучение и разум представляются чем-то абстрактным, нематериальным и эфемерным, потому что они независимы от субстрата: они живут своей жизнью, не отражая ни деталей своего устройства, ни особенностей основного материального субстрата.

 Любая материя может быть основой для памяти, если у используемого ее фрагмента достаточно разных стабильных состояний.

 Любая материя может стать компьюториумом, то есть вычислительным (компутационным) субстратом, надо только, чтобы в ней содержались определенные универсальные строительные блоки, которые могут быть объединены для вычисления любой функции. Гейты NAND и нейроны дают два важнейших примера таких универсальных вычислительных атомов.

 Нейронная сеть является мощным обучающимся субстратом, потому что, просто подчиняясь законам физики, она может преобразовываться, становясь все более пригодной для выполнения требуемых вычислений.

 Из-за поразительной простоты законов физики нас, людей, интересует лишь крошечная часть всех мыслимых вычислительных задач, а нейронные сети, как правило, именно для решения задач из этой крошечной части идеально подходят.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

 Любая материя может быть основой для памяти, если у используемого ее фрагмента достаточно разных стабильных состояний.

 Любая материя может стать компьюториумом, то есть вычислительным (компутационным) субстратом, надо только, чтобы в ней содержались определенные универсальные строительные блоки, которые могут быть объединены для вычисления любой функции. Гейты NAND и нейроны дают два важнейших примера таких универсальных вычислительных атомов.

 Нейронная сеть является мощным обучающимся субстратом, потому что, просто подчиняясь законам физики, она может преобразовываться, становясь все более пригодной для выполнения требуемых вычислений.

 Из-за поразительной простоты законов физики нас, людей, интересует лишь крошечная часть всех мыслимых вычислительных задач, а нейронные сети, как правило, именно для решения задач из этой крошечной части идеально подходят.

 Как только технология удваивает свою изначальную производительность, ее часто можно использовать для создания новой технологии, которая, в свою очередь, становится вдвое производительнее старой, что приводит к повторному удвоению возможностей в духе закона Мура. Уже на протяжении целого столетия стоимость информационных технологий сокращается вдвое примерно раз в два года, что и привело к нынешней информационной эре.

 Если развитие технологий искусственного интеллекта будет продолжаться, то задолго до того как AI достигнет человеческого уровня в решении всех задач, он успеет открыть нам новые увлекательные возможности и задать много новых вопросов в самых разных областях, связанных с инфекционными болезнями, законодательными системами, разоружением и созданием новых рабочих мест, каковые мы рассмотрим в следующей главе.

Глава 3

Ближайшее будущее: болезни, законы, оружие и работа

Если мы не поспешим изменить направление, мы рискуем прибыть туда, откуда отбыли.

Ирвин Кори

Что значит быть человеком в наше время? Например, что мы по-настоящему в себе ценим, что отличает нас от других форм жизни и от машин? Что другие люди ценят в нас, благодаря чему некоторые из них предлагают нам работу? Какие бы ответы на эти вопросы мы ни дали, ясно, что по мере развития технологий нам придется со временем изменять их.

Возьмите, например, меня. Как ученый я горжусь тем, что смог поставить перед собой собственные цели, мне достало ума и интуиции, чтобы решить довольно много не решенных до меня задач, и я сумел воспользоваться языком, чтобы сообщить о своих находках другим. К счастью для меня, общество оказалось готово заплатить мне за эту работу. Столетия назад я мог бы, наверное, как и многие другие, построить свою идентичность фермера или ремесленника, но с тех пор развитие технологий сильно сократило область, занимаемую такими профессиями. Это означает, что теперь стало невозможно каждому строить свою идентичность в сельском хозяйстве или в ремеслах.

Лично меня совсем не беспокоит, что сегодняшние машины превосходят меня в навыках ручного труда  в копании или вязании: для меня это не хобби, не источник дохода и не повод собою гордиться. В самом деле, любые иллюзии, которые могли у меня возникнуть по этому поводу, разбились, когда мне было всего восемь лет: у меня были уроки вязания в школе, показавшие мою полную неспособность к этому делу, и я смог хоть как-то справиться с данным мне заданием только благодаря помощи сострадательной пятиклассницы, сжалившейся надо мной.

Но если технологии будут продолжать развиваться, не случится ли так, что AI со временем превзойдет людей также и в том, чем я горжусь сейчас и за что меня ценят на рынке труда? Стюарт Рассел признавался мне, как ему с коллегами довелось недавно испытать момент искушения выразиться по матушке, когда они вдруг стали свидетелями такого, чего не ожидали от искусственного интеллекта еще много-много лет. Позвольте, пожалуйста, и мне рассказать вам о некоторых подобных моментах, в которых я вижу грядущую победу над многими из человеческих способностей.

Прорывы

Системы глубокого обучения с подкреплением и его агенты

В 2014 году, когда я смотрел видео, на котором разработанная DeepMind система с искусственным интеллектом училась играть в компьютерные игры, у меня отвисла челюсть. В особенности хорошо искусственному интеллекту удавалось играть в Breakout (см. рис. 3.1), классическую игру Atari, с нежностью вспоминаемую мной с подросткового возраста. Цель игры в том, чтобы, перемещая платформу, заставлять шарик биться о кирпичную стену. Всякий раз, когда удается выбить из стены кирпич, он пропадает, а счет увеличивается.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

В 2014 году, когда я смотрел видео, на котором разработанная DeepMind система с искусственным интеллектом училась играть в компьютерные игры, у меня отвисла челюсть. В особенности хорошо искусственному интеллекту удавалось играть в Breakout (см. рис. 3.1), классическую игру Atari, с нежностью вспоминаемую мной с подросткового возраста. Цель игры в том, чтобы, перемещая платформу, заставлять шарик биться о кирпичную стену. Всякий раз, когда удается выбить из стены кирпич, он пропадает, а счет увеличивается.

Назад Дальше