Рис. 3.2
Продолжение DeepMind искусственный интеллект AlphaGo. Пренебрегая тысячелетним человеческим опытом игры в го, он сделал невероятно творческий ход на пятой линии, вся сила которого обнаружилась только 50 ходов спустя, в результате у легенды го Ли Седоля не оставалось никаких шансов.
Детьми, появившимися в браке интуиции и логики, оказались ходы, которые были не просто сильными, в некоторых случаях их с полным основанием можно назвать креативными. Например, тысячелетняя мудрость го учит, что в начале игры надо стремиться захватить третью и четвертую линии от края. Тут есть возможность для торга: игра на третьей линии дает возможность быстро проводить краткосрочные захваты территории на краю доски, в то время как игра на четвертой линии способствует долгосрочному стратегическому влиянию на центр.
На тридцать седьмом ходу второй партии AlphaGo потряс мир го, пойдя наперекор этой древней мудрости и начав играть на пятой линии (рис. 3.2), словно он больше доверял своей способности долгосрочного планирования, чем человек, и поэтому отдавал предпочтение стратегическому преимуществу, а не краткосрочной выгоде. Комментаторы были ошеломлены, Ли Седоль даже поднялся и на какое-то время покинул помещение, где шла игра{11}. Они продолжали играть еще достаточно долго, было сделано еще примерно пятьдесят ходов, и только после этого основные события из нижнего левого угла доски переместились в центр, достигнув того самого камня, поставленного на тридцать седьмом ходу! И его присутствие здесь в конце концов сделало всю игру, навсегда внеся вторжение AlphaGo на пятую линию в анналы истории го как одно из самых важных открытий.
Именно из-за того, что игра в го требует интуиции и творчества, многие считают го в бо́льшей степени искусством, чем просто игрой. В Древнем Китае умение играть в го считалось одним из четырех основных искусств наряду с живописью, каллиграфией и игрой на цине[17], и оно остается чрезвычайно популярным в Азии: за первой партией между AlphaGo и Ли Седолем следили почти 300 миллионов человек. Результат матча глубоко потряс мир го, и победа AlphaGo стала для него важнейшей исторической вехой. Кэ Цзиэ, обладатель самого высокого рейтинга по го в то время, так прокомментировал это событие: Человечество играло в го тысячи лет, и все же, как нам показал искусственный интеллект, мы всего лишь поцарапали его поверхность Союз игроков-людей и игровых компьютеров открывает новую эру Человек и искусственный интеллект смогут найти истину го вместе. Плодотворное сотрудничество между человеком и машиной, и в самом деле, представляется очень многообещающим во многих сферах, включая науку, где искусственный интеллект, надеюсь, поможет нам, людям, углубить наше понимание мира и в значительно большей мере реализовать наш потенциал.
В конце 2017 года команда DeepMind запустила следующую модель AlphaZero. Человеческому искусству игры в го тысячи лет, были сыграны миллионы партий, но все они не понадобились AlphaZero, которая училась с нуля, играя сама с собой. Она не только разгромила AlphaGo, но и стала сильнейшим в мире игроком в шахматы и это тоже исключительно играя сама с собой. После двух часов практики она могла победить любого шахматиста-человека, а через четыре обыграла Stockfish, лучшую в мире шахматную программу. Меня тут особенно впечатляет не только то, что она била любого человека-шахматиста, но и то, что она обошла любого человека, занимающегося программированием искусственного интеллекта, она сделала устаревшим весь созданный людьми AI-софт, который разрабатывался несколько десятилетий. Иначе говоря, мы теперь не можем отмахнуться от идеи, что искусственный интеллект создает лучший искусственный интеллект.
Урок, преподанный нам AlphaGo, для меня состоял еще и в другом: объединение интуиции глубокого обучения с логикой старого доброго искусственного интеллекта может создавать стратегии на грани возможного. Поскольку го одна из самых сложных стратегических игр, AI-системы должны теперь использоваться для того, чтобы оценивать способности и развивать их у лучших стратегов среди людей, проявляющих себя далеко за пределами игровой доски. Например, речь можно вести об инвестиционной стратегии, стратегии во внешней политике или военных операциях. Решение стратегических задач в перечисленных областях реальной жизни, как правило, осложняется человеческой психологией, отсутствием информации и случайными факторами, но системы с искусственным интеллектом, успешно играющие в покер, уже продемонстрировали, что ни одна из этих проблем не может считаться непреодолимой.
Естественный языкЕсть еще одна сфера деятельности, где успехи искусственного интеллекта в последнее время потрясли меня. Это языки. Еще в раннем детстве я полюбил путешествовать, и мое любопытство в отношении других культур и других языков сыграло огромную роль в формировании моей идентичности. В нашей семье говорили по-шведски и по-английски, в школе я учил немецкий и испанский, в двух браках мне понадобилось изучать португальский и румынский, просто так, ради удовольствия, я изучал русский, французский и мандарин.
Но с искусственным интеллектом тягаться мне оказывается не под силу, и после важного открытия 2016 года больше нет таких приятных мне языков, в которых я могу переводить с одного на другой лучше, чем система AI, созданная мозгом Google.
Я достаточно прозрачно выразился? Я действительно пытался это сказать:
Но AI догоняет меня, и после крупного прорыва в 2016 году не осталось почти никаких языков, между которыми я могу переводить лучше, чем искусственный интеллект, разработанный командой Google Brain для Google-переводчика.
Я сначала перевел эту фразу на испанский и обратно, используя приложение, которое я установил на своем ноутбуке несколько лет назад. В 2016 году команда Google Brain обновила свою бесплатную услугу Google Translate, включив в нее использование рекурсивных глубоких нейронный сетей, и в сравнении со старыми добрыми системами GOFAI это оказалось принципиальным{12}:
Но AI догонял меня, и после прорыва в 2016 году практически не осталось языков, которые могут перевестись лучше, чем система AI, разработанная командой Google Brain.
Как вы можете видеть, местоимение Я потерялось во время захода в испанский язык, что, к сожалению, изменило смысл предложения[18]. Близко, да мимо! Однако в защиту искусственного интеллекта от Google должен признать, что меня часто критикуют за пристрастие к избыточно длинным предложениям, которые трудно разобрать, и я выбрал для этого примера одно из самых замысловато закрученных. Типичные предложения часто переводятся безукоризненно. Появление этой системы вызвало в результате изрядный переполох, и сейчас к ее помощи прибегают сотни миллионов человек ежедневно. Кроме того, благодаря использованию глубокого обучения для развития систем преобразования речи в текст или текста в речь их пользователи теперь могут проговаривать текст своему смартфону на одном языке и выслушивать его перевод на другой.
Преобразования текстов на естественных языках сейчас одна из наиболее быстро развивающихся областей применения искусственного интеллекта, и я думаю, что ее успешное развитие повлечет важные последствия, поскольку именно благодаря языку человек становится человеком. Чем сильнее становится искусственный интеллект в лингвистических предсказаниях, тем точнее он сможет ответить на электронное письмо или поддержать беседу. Благодаря этому, по крайней мере, у постороннего может сложиться впечатление, что он общается с человеком. Системы глубокого обучения делают сейчас первые шаги к тому, чтобы пройти знаменитый тест Тьюринга, научившись достаточно хорошо отвечать на вопросы в письменной форме, создавая у задающего их человека впечатление, что отвечает ему тоже человек.
Преобразования текстов на естественных языках сейчас одна из наиболее быстро развивающихся областей применения искусственного интеллекта, и я думаю, что ее успешное развитие повлечет важные последствия, поскольку именно благодаря языку человек становится человеком. Чем сильнее становится искусственный интеллект в лингвистических предсказаниях, тем точнее он сможет ответить на электронное письмо или поддержать беседу. Благодаря этому, по крайней мере, у постороннего может сложиться впечатление, что он общается с человеком. Системы глубокого обучения делают сейчас первые шаги к тому, чтобы пройти знаменитый тест Тьюринга, научившись достаточно хорошо отвечать на вопросы в письменной форме, создавая у задающего их человека впечатление, что отвечает ему тоже человек.
И все же в работе с языком у искусственного интеллекта впереди еще долгий путь. Я должен признаться, что хотя меня задевает, когда искусственный интеллект обходит меня в точности перевода, я напоминаю себе, что искусственный интеллект совсем не понимает, о чем говорится в переводимом им тексте, и от этого мне сразу становится лучше. Его натренировали на массивном объеме данных искать соответствующие грамматические конструкции в языках и устойчивые отношения между словами, но он не умеет обнаруживать связь этих слов с чем бы то ни было в реальном мире. Например, он может представлять каждое слово в виде списка из тысяч чисел, показывающих, насколько оно близко по значению некоторым другим словам. Он может заключить, что разница между королем и королевой аналогична разнице между мужем и женой, но он все равно не знает, что значит быть мужчиной или женщиной, или даже что существует такая вещь, как физическая реальность, с пространством, временем и материей.
Тест Тьюринга, коль скоро в нем речь об обмане, не раз критиковали за то, что он проверяет скорее человеческое занудство, чем разумность компьютера. Конкурирующая система получила название Winograd Schema Challenge и была нацелена именно на то, чтобы выявить уровень общего здравомыслия, которого современным системам глубокого обучения как раз и недостает. Мы, люди, по старинке пользуемся нашим знанием о реальном мире, пытаясь понять предложение, угадывая, к чему относится то или иное местоимение. Например, вот типичное задание Винограда: определить, к кому относится местоимение они в предложениях: