Черные дыры. Лекции BBC - Стивен Хокинг 3 стр.


Налицо парадокс. К нему я вернусь в моей следующей лекции, в которой расскажу о том, как черные дыры пошли в наступление на основополагающий принцип предсказуемости Вселенной и достоверности свершившегося, и о том, что может случиться, если вас затянет в такую дыру.

Д. Ш.: Итак, вместе со Стивеном Хокингом мы совершили научное путешествие, которое началось с утверждения Эйнштейна о невозможности коллапса звезд. Мы были свидетелями того, как ученые смирились с существованием черных дыр, и теперь движемся к спору о том, как причуды сингулярностей существуют и функционируют.

Черные дыры не так черны, как их малюют

Радиотрансляция 2 февраля 2016 года

В первой лекции я остановился на самом интересном: на парадоксе о природе черных дыр, невероятно плотных объектов, порожденных коллапсом звезд. Согласно одной из теорий, черные дыры с одинаковыми параметрами могут сформироваться из бесконечного разнообразия звезд. Другая теория говорит о том, что число возможных типов исходных объектов должно быть конечно. В этом заключается проблема информации, а именно: каждая частица и каждая сила во Вселенной в самой основе своей содержит ответ на закрытый вопрос «да» или «нет».

В первой лекции я остановился на самом интересном: на парадоксе о природе черных дыр, невероятно плотных объектов, порожденных коллапсом звезд. Согласно одной из теорий, черные дыры с одинаковыми параметрами могут сформироваться из бесконечного разнообразия звезд. Другая теория говорит о том, что число возможных типов исходных объектов должно быть конечно. В этом заключается проблема информации, а именно: каждая частица и каждая сила во Вселенной в самой основе своей содержит ответ на закрытый вопрос «да» или «нет».

Поскольку, как выразился физик-теоретик Джон Уилер, «у черной дыры нет волос», находясь снаружи черной дыры, невозможно сказать, что находится у нее внутри. Наблюдателю известно только три параметра черной дыры: ее масса, угловая скорость вращения и величина электрического заряда. Это означает, что черная дыра содержит огромное количество информации, которая скрыта от внешнего мира. Если количество информации, спрятанное внутри черной дыры, зависит от размера черной дыры, то, исходя из общих физических принципов, можно ожидать, что черная дыра обладает температурой и, следовательно, должна светиться как раскаленный металл. Но это невозможно, потому что, как всем известно, ничто не может покинуть пределы черной дыры, в том числе и тепловое излучение. По крайней мере, так считалось.

Этот парадокс просуществовал до начала 1974 года, когда я исследовал поведение вещества вблизи черной дыры в свете законов квантовой механики[6].

Д. Ш.: Квантовая механика наука о физических явлениях на микромасштабах [7]; она призвана объяснить поведение мельчайших частиц. Законы квантовой механики отличаются от законов, регулирующих поведение больших объектов, таких как планеты, то есть законов, впервые сформулированных Исааком Ньютоном. Использование этой «науки о малом» в изучении очень большого основа оригинального подхода Стивена Хокинга.

К моему огромному изумлению, я обнаружил, что черная дыра, похоже, испускает частицы с постоянной интенсивностью. Соглашаясь с тогдашним общепринятым мнением, я принял постулат о том, что черная дыра ничего не излучает. И поэтому пришлось приложить немало усилий в попытке избавиться от полученного мной досадного эффекта. Однако чем больше я работал над этим, тем более серьезные доводы получал в его защиту. В конце концов мне все же пришлось его принять. Окончательно я убедился в том, что это действительный физический процесс, когда математические расчеты показали: длины волн исходящих частиц в точности соответствовали тепловому излучению[8]. Согласно моим расчетам, черная дыра рождает и испускает частицы и излучение так же, как если бы она была обычным нагретым телом с температурой, пропорциональной ее поверхностной гравитации и обратно пропорциональной ее массе.

Д. Ш.: Это были первые расчеты, показавшие, что черная дыра это не улица с односторонним движением, заканчивающаяся тупиком. Неудивительно, что найденное излучение получило имя автора и сегодня носит название «излучение Хокинга», или «испарение Хокинга».

С того времени правильность математических вычислений, доказавших тот факт, что черные дыры испускают тепловое излучение, подтвердили многие ученые, которые использовали разные подходы и методы. И вот один из способов понять, что собой представляет такое излучение. Согласно законам квантовой механики все пространство заполнено виртуальными парами частиц и античастиц, которые постоянно материализуются из вакуума, а затем тут же исчезают, аннигилируют друг с другом.

Д. Ш.: Эта концепция опирается на представление о том, что вакуум никогда не бывает абсолютно пустым. Согласно квантово-механическому принципу неопределенности всегда есть вероятность того, что частицы существуют, но недолго[9]. Таким образом, пары частиц с противоположными характеристиками будут постоянно появляться и исчезать.

Эти частицы называются виртуальными, потому что в отличие от реальных частиц их нельзя регистрировать непосредственно с помощью детектора частиц. Однако косвенные следствия их присутствия могут быть измерены. Существование этих частиц подтверждается небольшим сдвигом, называемым лэмбовским сдвигом, который они производят для одного уровня энергетического спектра возбужденных атомов водорода[10]. В присутствии черной дыры одна виртуальная частица пары может влететь под горизонт, пропав навсегда, а вторая частица этой пары останется без партнера, необходимого для взаимной аннигиляции. Оставшаяся частица (или античастица) может и сама упасть в черную дыру вслед за своим партнером, но она может и уйти от черной дыры на бесконечность и тогда будет выглядеть как излучение черной дыры[11].

Д. Ш.: Ключевым моментом в таком процессе является то, что рождение и исчезновение виртуальных частиц, как правило, проходит незамеченным. Однако если это происходит непосредственно на краю черной дыры, то одна частица пары может оказаться втянутой в черную дыру, а другая нет. И убегающая частица будет выглядеть в точности так, как если бы черная дыра «выплюнула» ее.

Черная дыра с массой, равной массе Солнца, будет излучать указанным способом частицы чрезвычайно медленно настолько медленно, что этот процесс невозможно обнаружить. Однако могут существовать черные дыры и гораздо меньших масс, например, с гору[12]. Черная дыра размером с гору будет испускать рентгеновское и гамма-излучение, излучаемая энергия в секунду, или мощность, должна составить около 10 млн мегаватт. Такого количества энергии достаточно для снабжения электричеством всего мира. Однако использовать черную мини-дыру очень непросто. Дело в том, что ее нельзя поместить внутрь электростанции, потому что она тут же провалиться сквозь Землю и окажется в ее центре. Если бы мы действительно раздобыли такую черную дыру, то единственный способ ее удержать поместить на земной орбите.



Ученые искали черные мини-дыры таких масс, но пока ничего не нашли. И очень жаль! Потому что если бы они отыскались, я получил бы Нобелевскую премию. Есть, правда, другая возможность заполучить черные мини-дыры создать их самостоятельно в многомерном пространстве-времени.

Д. Ш.: Словосочетание «многомерное пространство-время» обозначает то, что выходит за пределы трех пространственных измерений, всем нам хорошо знакомых из повседневной жизни, в сочетании с четвертым временем. Эта идея возникла как частная задача при попытках объяснить, почему гравитационные силы настолько слабее всех других сил в природе, например электромагнитных. Быть может, гравитация так слаба в нашем мире на малых масштабах, потому что вынуждена одновременно «работать» и в параллельных измерениях.

Согласно некоторым теориям Вселенная, в которой мы живем,  это всего лишь четырехмерная поверхность в 10 или 11-мерном пространстве-времени. Фильм «Интерстеллар»[13] дает некоторое представление о том, на что это могло бы быть похоже. Дополнительные измерения мы, конечно, не видим. Дело в том, что свет может распространяться только в четырехмерном пространстве-времени, он не может проникнуть в другие измерения. А вот гравитация вездесуща, и ее действие в дополнительных измерениях может оказаться гораздо сильнее, чем в нашем мире. Именно поэтому небольшая черная дыра смогла бы сформироваться в дополнительных измерениях. Возможно, этот процесс даже можно наблюдать при помощи БАК, Большого адронного коллайдера, в ЦЕРНе в Швейцарии. Этот ускоритель состоит из кругового тоннеля длиной 27 километров. Два пучка заряженных частиц двигаются по этому тоннелю в противоположных направлениях и сталкиваются. В результате некоторых столкновений могут родиться черные микродыры. Об их появлении на свет будут свидетельствовать излучаемые ими частицы определенного вида. Так что Нобелевская премия мне, быть может, еще и достанется!


Д. Ш.: Нобелевская премия по физике присуждается, когда теория «проверена временем». На практике это означает наличие веских доказательств. Например, Питер Хиггс был одним из ученых, которые еще в 1960-х годах предполагали существование частицы, благодаря которой другие частицы приобретают массу. Почти пятьдесят лет спустя два независимых детектора на БАК зарегистрировали признаки объекта, ставшего известным как бозон Хиггса. Это был триумф науки и технологии, гениальной теории и ее неопровержимого доказательства. В итоге Питер Хиггс и бельгийский ученый Франсуа Энглерт были удостоены высшей научной награды. Что же касается излучения Хокинга, то пока никаких доказательств этого эффекта не обнаружено. Некоторые ученые предполагают, что зафиксировать его слишком сложно. Но это все еще может случиться, потому что с каждым годом наши знания о черных дырах умножаются.

Частицы, улетая от черной дыры, уменьшают ее массу, в результате чего черная дыра сокращается в размерах[14]. С уменьшением размера черная дыра излучает все интенсивнее. В конце концов она теряет всю свою массу и попросту исчезает. Возникает вопрос: что же тогда происходит со всеми частицами и незадачливыми космонавтами, когда-то давно попавшими в черную дыру? Они же не могут возникнуть снова, когда черная дыра исчезнет. Получается, что информация о том, что упало в черную дыру, пропала. Если не считать общей массы, скорости вращения и электрического заряда. Потеря информации приводит к серьезной проблеме, которая затрагивает самую суть нашего понимания науки[15].

Частицы, улетая от черной дыры, уменьшают ее массу, в результате чего черная дыра сокращается в размерах[14]. С уменьшением размера черная дыра излучает все интенсивнее. В конце концов она теряет всю свою массу и попросту исчезает. Возникает вопрос: что же тогда происходит со всеми частицами и незадачливыми космонавтами, когда-то давно попавшими в черную дыру? Они же не могут возникнуть снова, когда черная дыра исчезнет. Получается, что информация о том, что упало в черную дыру, пропала. Если не считать общей массы, скорости вращения и электрического заряда. Потеря информации приводит к серьезной проблеме, которая затрагивает самую суть нашего понимания науки[15].

Назад Дальше