Площадь и башня [Cети и власть от масонов до Facebook] - Ниал Фергюсон 8 стр.


Спустя еще тридцать лет лингвист и библиограф Юджин Гарфилд придумал сходный графический способ наглядно показывать историю разных научных областей при помощи историограммы цитат. С тех пор индексы цитирования и факторы влияния стали стандартными инструментами измерения академических достижений в науке. А еще они дают возможность отображать процесс появления новых научных идей например обнаруживая невидимые колледжи, которые вызываются к жизни сетями цитирования и которые весьма отличаются от тех настоящих колледжей, где работают большинство ученых[131]. Впрочем, подобные показатели иногда говорят лишь о том, что ученые склонны цитировать труды тех ученых, кто близок им по взглядам. Как гласит старая пословица, свой своему поневоле брат. Это относится не только к цитированию, но и ко многому другому. Если два узла связаны с третьим, то высока вероятность, что они окажутся связаны и друг с другом, потому что (говоря словами экономиста Джеймса Э. Рауха) два человека, которые знакомы со мной, будут знакомы между собой с большей вероятностью, чем два произвольно выбранных человека[132]. Триада, все участники которой связаны между собой положительными чувствами, называется уравновешенной и иллюстрирует изречение друг моего друга мой друг. Другая триада, два участника которой не знают друг друга, хотя знают третьего участника, иногда называется запретной триадой. (Вариант, при котором два участника дружны между собой, а третий враждебен одному из них, являет собой пример такой неприятной ситуации, когда враг моего друга мой друг[133].)

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Илл. 4. Иллюстрация  1 Эйлера из его книги Solutio problematis ad geometriam situs pertinentis [лат. Решение задачи, связанной с геометрией положения] (1741). Те, кто пожелал бы испытать решение задачи на месте, уже не имеют возможности сделать это, так как два из семи старинных мостов не пережили бомбежек города во время Второй мировой войны, а еще два были разрушены уже после того, как Кёнигсберг стал советским Калининградом.


Таким образом, гомофилия наша склонность испытывать притяжение к людям, похожим на нас самих (ее еще называют ассортативностью),  может считаться первым законом работы социальных сетей. Эверетт Роджерс и Дилип Бхоумик первыми из социологов предположили, что гомофилия может оборачиваться и минусами, ограничивая круг общения человека; они высказали мысль, что существует и оптимальная гетерофилия. Не выступает ли гомофилия своего рода самосегрегацией? В 1970-х годах Уэйн Зэкери выстроил схему дружеских связей между членами университетского клуба каратистов. Эта схема выявила наличие двух отчетливо обозначенных групп внутри клуба. Гомофилия может основываться на общем статусе (это и заданные характеристики, например расовая, национальная, половая и возрастная принадлежность, и приобретенные характеристики, например религиозная принадлежность, образование, профессия или модель поведения) или на общих ценностях, поскольку их возможно отличить от приобретенных черт[134]. Знакомая иллюстрация этого явления наклонность американских школьников самоизолироваться на основе расовой и национальной общности (см. вкл.  3), хотя недавние исследования и наводят на предположение, что эта тенденция существенно разнится от одной расовой группы к другой[135].

Могут ли такие схемы показать нам, кто из людей играет главные роли? Лишь в ХХ веке ученые и математики формально определили значимость такого понятия, как центральность. Три важнейших показателя важности в формальном сетевом анализе это центральность по степени, центральность по посредничеству и центральность по близости. Центральность по степени по количеству ребер, исходящих от одного конкретного узла,  служит показателем общительности: это просто число отношений, которыми один человек связан с другими. Центральность по посредничеству понятие, официально закрепленное социологом Линтоном Фрименом в конце 1970-х годов,  позволяет оценить количество информации, проходящей через тот или иной узел. Подобно тому как пассажиры общественного транспорта, стремящиеся побыстрее добраться до места назначения, создают заторы на немногочисленных пересадочных станциях, участники одной общей сети тоже часто обращаются к нескольким ключевым фигурам, которые способны связать их с другими, более отдаленными от них людьми или группами людей. Фигурами, обладающими центральностью по посредничеству, необязательно являются люди, имеющие наибольшее количество связей: важно, чтобы у них имелись по-настоящему важные связи. (Иными словами, дело не в количестве, а в качестве ваших знакомств.) Наконец, центральность по близости это показатель, учитывающий среднее количество шагов, которые требуется совершить каждому узлу, чтобы добраться до всех остальных узлов; его часто используют, чтобы определить, у кого имеется наилучший доступ к информации при условии ее широкого распространения[136]. Люди, обладающие высокой центральностью по степени, по посредничеству или по близости, каждый на свой лад служат основными узлами связи.


Илл. 5. Упрощенная схема Эйлеровой задачи о кёнигсбергских мостах. Задачу можно решить, только убрав грань в середине (то есть мост, соединяющий два острова, на илл. 4).


В середине ХХ века произошел и существенный прогресс в нашем понимании совокупных свойств сети, которые зачастую остаются незаметными с точки зрения любого отдельного узла. Р. Дункан Люче и Альберт Перри из Массачусетского технологического института предложили использовать коэффициенты кластеризации для измерения той степени, в которой связаны между собой узлы в группе, причем крайним случаем считается клика, внутри которой каждый узел связан со всеми остальными в группе. (Строго говоря, коэффициент кластеризации показывает количественное соотношение полносвязанных общественных триад, то есть таких, в которых каждый член любой троицы связан с двумя остальными.) Плотность сети похожий критерий взаимосвязанности.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

Илл. 5. Упрощенная схема Эйлеровой задачи о кёнигсбергских мостах. Задачу можно решить, только убрав грань в середине (то есть мост, соединяющий два острова, на илл. 4).


В середине ХХ века произошел и существенный прогресс в нашем понимании совокупных свойств сети, которые зачастую остаются незаметными с точки зрения любого отдельного узла. Р. Дункан Люче и Альберт Перри из Массачусетского технологического института предложили использовать коэффициенты кластеризации для измерения той степени, в которой связаны между собой узлы в группе, причем крайним случаем считается клика, внутри которой каждый узел связан со всеми остальными в группе. (Строго говоря, коэффициент кластеризации показывает количественное соотношение полносвязанных общественных триад, то есть таких, в которых каждый член любой троицы связан с двумя остальными.) Плотность сети похожий критерий взаимосвязанности.

Важность таких единиц измерения стала очевидной в 1967 году, когда социальный психолог Стэнли Милгрэм провел свой знаменитый эксперимент. Он направил письма произвольно выбранным адресатам, жившим в Уичито, штат Канзас, и в Омахе, штат Небраска. Получателей просили переслать письмо напрямую намеченному конечному адресату соответственно, жене одного студента-богослова из Гарварда и одному биржевому маклеру в Бостоне,  если они лично знают этих людей, или же переслать письмо кому-нибудь, кто, по их мнению, может знать конечного адресата, при условии, что они сами коротко знакомы с посредником. А еще их просили отправить Милгрэму открытку отслеживания и в ней рассказать о том, что именно они сделали. В целом, по сообщению Милгрэма, 44 из 160 писем из Небраски в итоге были доставлены по назначению[137]. (Более позднее исследование наводит на предположение, что таких писем было всего 21[138].) Законченные цепочки позволили Милгрэму подсчитать количество посредников, задействованных для того, чтобы доставить письмо по назначению: в среднем оно равнялось пяти[139]. Это открытие предвосхитил венгерский писатель Фридьеш Каринти в рассказе Звенья цепи (Láncszemek), напечатанном в 1929 году: там главный герой держит с приятелями пари, что сумеет связаться с любым человеком на Земле, кого бы они ни назвали, всего через пятерых общих знакомых, из которых ему самому нужно лично знать всего одного. К этой же задаче подступались и другие исследователи, проводившие эксперименты независимо друг от друга,  в частности, политолог Итиэль де Сола Пул и математик Манфред Кохен.

Сеть, в которой два узла связаны через пятерых посредников, имеет шесть ребер (звеньев). Выражение шесть рукопожатий [буквально шесть степеней разделения] прижилось лишь после появления в 1990 году одноименной пьесы Джона Гуэра, но у него имелась долгая предыстория. Как и представление о том, что мир тесен (так назвали диснейлендовский аттракцион, придуманный в 1964 году), или техническое понятие близости, эта фраза очень емко подытоживает ощущение взаимосвязанности, усилившееся в середине ХХ века. Эта тема разыгрывалась во множестве вариаций: шесть шагов до Марлона Брандо, шесть шагов до Моники Левински, шесть шагов до Кевина Бейкона (этот вариант даже превратился в настольную игру[140]), шесть шагов до Луизы Вайсберг (матери одного из друзей Малкольма Гладуэлла[141]), а еще если обратиться к научным аналогам этих игр шесть шагов до математика Пала Эрдёша, который, как известно, заложил основы теории сетей[142]. Недавно проведенные исследования позволяют предположить, что количество этих рукопожатий сейчас скорее ближе к пяти, чем к шести, а это, в свою очередь, наводит на мысль о том, что с 1970-х годов технический прогресс, пожалуй, принес не такие уж разительные перемены в нашу жизнь, как принято считать[143]. Впрочем, для директоров тысячи самых крупных компаний, по версии журнала Fortune, это число составляет 4,6[144]. А для пользователей сети Facebook оно составляло 3,74 в 2012 году[145] и только 3,57  в 2016-м[146].

Глава 6

Слабые связи и вирусные идеи

Это открытие оказывается очень занимательным, потому что обычно мы думаем, что наши дружеские связи охватывают относительно небольшие группы людей или кружки похожих людей, единомышленников, которые существуют обособленно от других групп, куда входят совсем другие люди непохожие на нас, но сходные между собой. А если всех нас в действительности отделяет от Моники Левински лишь шесть рукопожатий, то это объясняется явлением, которому стэнфордский социолог Марк Грановеттер дал парадоксальное название сила слабых связей[147]. Если бы все связи были похожи на крепкие гомофилические узы, какие связывают нас с нашими близкими друзьями, то мир неизбежно оказался бы фрагментирован. Но более слабые связи со знакомыми, с которыми у нас уже меньше сходства,  играют ключевую роль в феномене, который описывается фразой мир тесен. Изначально Грановеттера интересовал вопрос о том, почему людям, которые ищут работу, чаще помогают знакомые, чем близкие друзья, но затем ему в голову пришла мысль, что в обществе с относительно малым количеством слабых связей новые идеи будут распространяться медленнее, научные дерзания будут натыкаться на помехи, а подгруппам, разделенным по принципу расовой, национальной или территориальной принадлежности или по иным критериям, будет сложно достичь взаимопонимания[148]. Иными словами, слабые связи это жизненно важные мосты, переброшенные между различными кластерами или группами, которые иначе не были бы никак связаны друг с другом[149].

Назад Дальше