В последней главе я немного порассуждаю о будущем Вселенной. Возможно, она будет бесконечно расширяться, становясь холоднее, разреженней и постепенно умирая. А может быть, она снова сожмется, разломав галактики, звезды, атомы и, наконец, атомные ядра на их составные части. Тогда все наши сегодняшние вопросы по поводу первых трех минут встанут во всей своей полноте, когда мы захотим предсказать ход событий в последние три минуты.
2. Расширяющаяся Вселенная
Созерцая ночное небо, поражаешься неизменности Вселенной. Конечно, оно вращается вокруг Полярной звезды, по лику Луны проплывают облака, а сама Луна, если подождать, убывает, потом снова нарастает и при этом перемещается вместе с планетами на звездном фоне. Но мы-то знаем, что все эти явления происходят поблизости и вызваны движением в нашей собственной Солнечной системе. Звезды же, в отличие от планет, кажутся неподвижными.
Впрочем, звезды все-таки тоже перемещаются со скоростями, достигающими нескольких километров в секунду. Таким образом за год наиболее быстрые из них запросто могут пролететь десять миллиардов километров или около того. Но это в тысячу раз меньше, чем расстояние даже до ближайших соседок. Поэтому их видимое положение на небе меняется очень медленно. Скажем, сравнительно быстрая звезда Барнарда находится на расстоянии примерно 56 миллионов километров от Земли и движется поперек луча зрения со скоростью 89 км/с (или 2,8 миллиарда километров в год). В результате за один год она смещается всего на 0,0029 градуса. Изменение видимого положения близких звезд астрономы называют «собственным движением». А вот видимое положение более далеких звезд меняется настолько медленно, что их собственное движение не сможет заметить даже самый терпеливый наблюдатель.
Но впечатление о неизменности мироздания обманчиво. Наблюдения, о которых пойдет речь в этой главе, свидетельствуют: Вселенная проходит стадию мощного взрыва, в котором грандиозные звездные острова галактики разлетаются со скоростями, сравнимыми со скоростью света. Мы можем мысленно вернуться к началу этого процесса и предположить, что в некий момент в прошлом все эти галактики располагались гораздо ближе друг к другу. Более того, во Вселенной было настолько тесно, что ни галактики, ни звезды, ни даже атомы с их ядрами не могли существовать в цельном виде. Как раз ту эпоху мы и называем «ранней Вселенной», и именно она составляет предмет данной книги.
О расширении Вселенной мы знаем исключительно благодаря тому факту, что астрономы умеют измерять движение светящихся тел вдоль луча зрения гораздо точнее, чем под прямым углом к нему. Этот метод основан на хорошо известном свойстве любых волновых процессов на так называемом эффекте Доплера. Когда мы принимаем звуковую или световую волну от неподвижного источника, интервал между прибытиями ее соседних гребней такой же, с какими они его покинули. Стоит, однако, источнику начать удаляться, как промежутки времени между приходом гребней становятся больше, чем между моментами испускания. Происходит это потому, что каждый последующий гребень преодолевает большее расстояние, чем предыдущий. Задержка между приходом соседних гребней это всего-навсего длина волны, деленная на ее скорость. Именно поэтому удаляющийся источник испускает более длинные волны, чем покоящийся. Точнее, относительное увеличение длины волны равно, как показано в математической заметке 1 (с. 233), отношению скорости источника к скорости самой волны. Аналогично, если источник приближается, то время между приходами соседних гребней уменьшается, потому что расстояние, проходимое каждым последующим гребнем, меньше, чем у предыдущего. То есть волна становится короче. Например, представим ушедшего в плавание моряка, который каждую неделю посылает письма с корабля домой. Чем дальше он уплывает, тем дольше идет каждое такое послание, и семья получает их чуть реже, чем раз в неделю. На обратном же пути, чем ближе корабль к порту приписки, тем быстрее идут письма. Это значит, что дома их получают чуть чаще, чем раз в неделю.
В наши дни эффект Доплера в отношении звуковой волны ничего не стоит проверить экспериментально. Выйдя на обочину скоростного шоссе, вы без труда заметите, что звук мотора пролетающего мимо автомобиля выше (т. е. длина волны короче), когда машина приближается, и ниже когда удаляется. Приоритет в обнаружении этого эффекта (как для звука, так и для света) безусловно принадлежит преподавателю математики пражского Политехнического института Иоганну Кристиану Доплеру, открывшему его в 1842 г. В 1845 г. голландский метеоролог Кристофер Генрих Дитрих Бейс-Балло подверг звуковой эффект Доплера экспериментальной проверке. В выдумке Бейс-Балло не откажешь: в качестве движущегося источника звука он взял ансамбль трубачей, которые стояли на платформе поезда, ехавшего по сельским просторам вблизи города Утрехта.
Доплер полагал, что его эффект поможет объяснить, почему звезды бывают разных цветов. Свет удаляющихся от Земли звезд сдвинулся бы в сторону больших длин волн. А поскольку у красного длина волны больше, чем средняя длина волны видимого света, то и звезды показались бы нам покрасневшими. Аналогично в сторону более коротких длин волн сдвинулся бы свет от звезд, приближающихся к Земле. Поэтому они, на наш взгляд, казались бы непривычно голубыми. Однако вскоре Бейс-Балло и другие указали, что эффект Доплера к цвету звезд не имеет никакого отношения. Да, синий цвет в излучении удаляющейся звезды действительно меняется на красный. Но в то же время не различаемый человеческим глазом ультрафиолет сдвигается в синию часть видимого спектра, так что общий цвет вряд ли сильно меняется. На самом же деле у звезд разные цвета потому, что у них разная температура поверхности.
Однако триумф эффекта Доплера в астрономии все же состоялся: в 1868 г. его применили к изучению отдельных спектральных линий. За много лет до этого, в 18141815 гг., оптик из Мюнхена Йозеф Фраунгофер обнаружил, что если заставить солнечный свет пройти сначала через узкую щель, а потом через стеклянную призму, то получается цветной спектр, усеянный сотнями темных линий, каждая из которых представляет собой изображение щели. Некоторые из этих линий Вильям Гайд Волластон наблюдал еще раньше, в 1802 г., но большого внимания тогда на них не обратил. Эти линии всегда приходились на одни и те же цвета, имеющие строго определенные длины волн. Те же самые линии на тех же самых местах Фраунгофер увидел и в спектрах Луны и ярких звезд. А вскоре стало ясно, что они возникают тогда, когда свет от нагретой поверхности звезды проходит через ее более холодную атмосферу, которая его выборочно поглощает на определенных длинах волн. Каждая линия обязана своим появлением какому-нибудь химическому элементу, поглощающему свет на этой длине волны. Таким образом было установлено, что химические элементы на Солнце такие как натрий, железо, магний, кальций и хром не отличаются от химических элементов на Земле. (Как сегодня известно, длины волн темных линий таковы, что фотон с этой длиной волны имеет как раз нужную энергию для того, чтобы перевести атом из низкоэнергетического состояния в возбужденное.)
Однако триумф эффекта Доплера в астрономии все же состоялся: в 1868 г. его применили к изучению отдельных спектральных линий. За много лет до этого, в 18141815 гг., оптик из Мюнхена Йозеф Фраунгофер обнаружил, что если заставить солнечный свет пройти сначала через узкую щель, а потом через стеклянную призму, то получается цветной спектр, усеянный сотнями темных линий, каждая из которых представляет собой изображение щели. Некоторые из этих линий Вильям Гайд Волластон наблюдал еще раньше, в 1802 г., но большого внимания тогда на них не обратил. Эти линии всегда приходились на одни и те же цвета, имеющие строго определенные длины волн. Те же самые линии на тех же самых местах Фраунгофер увидел и в спектрах Луны и ярких звезд. А вскоре стало ясно, что они возникают тогда, когда свет от нагретой поверхности звезды проходит через ее более холодную атмосферу, которая его выборочно поглощает на определенных длинах волн. Каждая линия обязана своим появлением какому-нибудь химическому элементу, поглощающему свет на этой длине волны. Таким образом было установлено, что химические элементы на Солнце такие как натрий, железо, магний, кальций и хром не отличаются от химических элементов на Земле. (Как сегодня известно, длины волн темных линий таковы, что фотон с этой длиной волны имеет как раз нужную энергию для того, чтобы перевести атом из низкоэнергетического состояния в возбужденное.)
В 1868 г. сэр Уильям Хаггинс убедительно продемонстрировал, что темные линии в спектрах некоторых ярких звезд по сравнению с их нормальным положением в спектре Солнца немного сдвинуты в красную или синюю область. Он верно истолковал это явление как доплеровское смещение света звезды, удаляющейся или приближающейся к Земле. Например, длины волн всех темных линий в спектре звезды Капелла больше соответствующих длин волн в спектре Солнца на 0,01 %. Этот сдвиг в красную область означает, что Капелла летит от нас со скоростью, составляющей 0,01 % от скорости света, т. е. 30 км/с. Впоследствии эффект Доплера помог измерить скорости солнечных протуберанцев, двойных звезд и колец Сатурна.
Методу определения скоростей с помощью доплеровского смещения по самой его сути присуща высокая точность: в таблицах длины волн зачастую приводятся с восемью значащими цифрами. Достоверность метода не зависит и от расстояния до источника, если последний светит достаточно сильно для того, чтобы можно было увидеть спектральные линии на фоне излучения ночного неба.
Как раз благодаря эффекту Доплера нам известны типичные значения скоростей звезд, упоминавшихся в начале этой главы. Он также позволяет оценивать расстояния до ближайших звезд. Если из каких-либо соображений задать направление движения звезды, то доплеровское смещение дает возможность вычислить ее скорость как поперек луча зрения, так и вдоль него. Таким образом, измерив видимое движение звезды по небу, мы можем сказать, насколько она далеко от нас. Однако эффект Доплера начал играть в космологии важную роль лишь тогда, когда астрономы занялись изучением спектра объектов, расположенных значительно дальше видимых звезд. Мне придется чуть отвлечься, чтобы рассказать об открытии этих объектов, а потом мы снова вернемся к эффекту Доплера.
Эту главу мы начали с созерцания ночного неба. Помимо Луны, планет и звезд существуют еще два небесных тела, значение которых для космологии трудно переоценить.
Первое из них настолько величественно и грандиозно, что его бывает можно рассмотреть даже на засвеченном городском небе. Эта полоса света, опоясывающая небесную сферу огромным кольцом, с древних времен носит имя Млечный Путь. В 1750 г. английский астроном-любитель Томас Райт, мастеривший приборы своими руками, опубликовал замечательную книгу «Оригинальная теория, или Новая гипотеза об устройстве Вселенной»[3]. В ней он предположил, что звезды образуют плоскую круглую плиту своего рода «точильный круг» конечной толщины, простирающийся далеко по всем направлениям. Внутри него лежит и Солнечная система. Поэтому, естественно, когда мы смотрим с Земли вдоль плоскости круга, то видим больше света, чем по всем другим направлениям. И называем это Млечным Путем.