Кроме того, натуральный или чистый строй совершенно не решает проблему транспонирования. На самом деле он ее только усугубляет, потому что каждое транспонирование на квинту дает две новые ноты вместо одной. Например, транспонирование гаммы от до до соль дает не только новую ноту фа-диез, но и еще ля, которая отличается от этой же ноты в тональности до. Разница частот является результатом несовпадения между двумя типами шагов в целый тон, 9/8 и 10/9, равняется 1.0125 и называется синтонической коммой.
Рис. 3.16 Клавиатура, изобретенная Мареном Мерсенном (а), и фисгармония Роберта Бозанкета (б) были разработаны с целью включить в октаву более двенадцати нот в рамках требований неравномерной темперации.
Примечательно, что теоретики музыки указанного периода решили жить с этой проблемой, хотя для инструментов с фиксированной высотой звука, таких как орган и клавесин, это означало появление дополнительных нот при различной настройке (музыканты, игравшие на струнных инструментах, могли приспособиться, точно определив место прижимания струны, хотя эта задача была серьезным испытанием их точности и ловкости). Клавиатура, которую в 1630-х годах изобрел французский математик Марен Мерсенн, включала тридцать одну ноту в диапазоне октавы, в том числе пятнадцать между фа и ля (Рис. 3.16а). Кажется, что на этом играть просто невозможно, хотя есть информация, что виртуозный Йозеф Гайдн якобы давал на таком инструменте концерты в Нидерландах. Другие системы настройки, которые появились за прошедшие века, предлагали еще более абсурдную градацию нот: фисгармония Бозанкета инструмент с нетрадиционной настройкой, созданный в 1870-х годах по заказу ученого и теоретика музыки Роберта Холфорда Бозанкета, имела 84 ноты в октаве (Рис. 3.17б).
Еще одним популярным решением неурядиц пифагорова строя был среднетоновый строй, который появился в начале пятнадцатого века. Он основан на том же методе прибавления нот через цепочку чистых квинт, но справляется с фундаментальной проблемой невозможности абсолютно точно вписать в целое число октавных шагов какого-либо количества шагов в чистую квинту: соотношение частот квинт намеренно уменьшалось относительно «идеальной» пропорции 3:2. Самый распространенный среднетоновый строй на четверть коммы был впервые описан в 1523 году флорентийским теоретиком музыки Пьетро Аароном. Аарон сократил каждую чистую квинту на ¼ синтонической коммы. Четыре шага укороченной квинты приводили к мажорной терции двумя октавами выше. Однако все квинты невозможно последовательно преобразовать таким способом: одна из них оказалась значительно «шире» и получила название волчий интервал (из-за высокого «воющего» звука). Кроме того, в октаве по-прежнему оставалось более двенадцати нот: диезы и бемоли не совпадали.
Решение всех этих проблем в принципе было достаточно ясным. Если октава просто делится на двенадцать равных хроматических шагов, каждый из которых состоит из полутона, то последовательность идентичных по высоте шагов, таких как последовательность мажорного звукоряда тон-тон-полутон-тон-тон-тон-полутон, может начинаться с любой ноты и всегда звучать одинаково. Вопрос заключается в том, каким должен быть это базовый интервал? Не отрекаясь от идеи о каком-либо относительно простом соотношении частот, отец Галилео Галилея, Винченцо, который учился в традиции Царлино, в 1581 году предположил, что повышение полутона должно совпадать с увеличением частоты на фактор 18/17. Двенадцать таких шагов повышают первоначальную частоту примерно на 1.9855, что очень близко к идеальному фактору 2. Но это означало бы, что интервалы в октаву, квинту и кварту лишатся своих идеальных ценных качеств они окажутся немного снижены, что было бы грубейшим оскорблением классической идеи о гармонии, поэтому предложение не было принято.
Нужно было точное решение проблемы; его открытие произошло практически одновременно в двух разных местах, в Китае и Голландии. Только один фактор, который умножается сам на себя двенадцать раз (по разу на каждый полутон), способен дать точное удвоение частоты, и это корень из двух в двенадцатой степени 122 или 21/12. Такое определение полутона давало более «идеальное» звучание квинт и кварт, чем предложенное Винченцо Галилеем соотношение 18/17: кварта больше тоники на фактор 1.3348 (по сравнению с пифагорейской 4/3 или 1,3333), а квинта на 1,4983 (по сравнению с 3/2 или 1,5).
Эта система называется равномерной темперацией. Впервые она была опубликована в 1584 году китайским ученым Чжу Цзайюем, принцем династии Мин, а фламандский математик Симон Стевин выдвинул ту же идею годом позже. Некоторые утверждают, что Стевин был знаком с концепцией Чжу, что вполне может быть правдой: с 1580 года каждые два года в португальской колонии Макао в дельте Жемчужной реки проходила торговая ярмарка, где европейцы и китайцы обменивались не только товарами, но и идеями; однако прямая связь между Чжу и Стевиным не установлена. В дальнейшем система равномерной темперации была развита в начале семнадцатого века Мерсенном, несмотря на его пристрастие к инструментам с натуральным строем.
Однако у системы равномерной темперации существует философский недостаток, ведь 21/12 не только сложное число, но еще и иррациональное, то есть его нельзя представить в виде дроби целых чисел. А как же гармоничная математика пифагорейской концепции музыки? Стевина это не тревожило. Что такого особенного в пифагоровой квинте, спрашивал он, если она ведет к полутону, основанному на жутком соотношении 256/243? С точки зрения математика 21/12 весьма утонченная цифра, и если кто-то думает иначе, это его личные проблемы.
Множество людей с ним не соглашалось, а многие не согласны до сих пор: они настаивают, что система равномерной темперации нанесла ущерб «правильной» гармонии и заставила ее звучать грубо по сравнению с более ранними альтернативными вариантами строя. Герман фон Гельмгольц, немецкий физиолог, который в девятнадцатом веке стоял у истоков понимания акустики, утверждал, что равномерная темперация «неприятна для неиспорченного слуха». В самом деле, разницу между двумя системами нельзя было не заметить: интервал большая терция вызывал самые большие споры. В системе равномерной темперации он был выше почти на один процент, чем в чистом строе, а для большинства людей эта разница прекрасно слышна. Как мы вскоре убедимся, любые споры на тему «превосходства» одной системы настройки над другой лишены основания и в целом сводятся к разговорам о том, кто к чему больше привык.[12]
Несколько других примеров «циклической» настройки, которые были предложены с начала шестнадцатого века, ставили перед собой цель замкнуть цепь квинт и таким образом позволить модуляцию в любую тональность без появления фальшивых нот. В угоду этой цели чаще всего страдали квинты: интервалы получались разной длины, обычно короче на белых клавишах и длиннее на черных. Немецкий теоретик музыки Андреас Веркмейстер предложил подобные схемы в конце семнадцатого века, назвав их «wohl temperiert» («хорошо темперированные»). Продолжаются споры и о том, написал ли И. С. Бах «Хорошо темперированный клавир» сборник прелюдий и фуг во всех двадцати четырех мажорных и минорных тональностях для хорошей темперации или для равномерной темперации. Как бы то ни было, его произведение демонстрировало преимущество замкнутой системы настройки, которая позволяла композитору в равной мере пользоваться всеми тональностями. Лучшей рекламы нельзя было вообразить, но даже она не смогла обеспечить всеобщего принятия равномерной темперации вплоть до девятнадцатого века.
Задача до сих пор остается нерешенной: математически невозможно найти какой-либо строй, который можно модулировать в любую тональность с сохранением соотношения простой пропорции частот, таких как чистая квинта, кварта и октава. Ученый-акустик Уильям Сетарес предложил гениальное решение, которое пользуется произвольными способами настройки электронных инструментов. Он разработал алгоритм Adaptun, который позволяет электронной клавиатуре адаптировать свой строй в режиме реального времени нота за нотой, чтобы найти «идеальные» интервалы в любой момент музыки. Для использования алгоритма не нужно обладать знаниями о тональности музыки программа просто находит наилучший вариант «частной настройки» для каждой комбинации нот. Вы можете прослушать результат работы Adaptun на сайте Сетареса и на CD http://eceserv0.ece.wisc.edu/~sethares/.
Задача до сих пор остается нерешенной: математически невозможно найти какой-либо строй, который можно модулировать в любую тональность с сохранением соотношения простой пропорции частот, таких как чистая квинта, кварта и октава. Ученый-акустик Уильям Сетарес предложил гениальное решение, которое пользуется произвольными способами настройки электронных инструментов. Он разработал алгоритм Adaptun, который позволяет электронной клавиатуре адаптировать свой строй в режиме реального времени нота за нотой, чтобы найти «идеальные» интервалы в любой момент музыки. Для использования алгоритма не нужно обладать знаниями о тональности музыки программа просто находит наилучший вариант «частной настройки» для каждой комбинации нот. Вы можете прослушать результат работы Adaptun на сайте Сетареса и на CD http://eceserv0.ece.wisc.edu/~sethares/.
Аккорд из одной ноты
Очевидно, что попытки свести европейскую музыкальную гамму к чистой математике и таким образом отыскать «натуральный» базис музыки быстро привели к новым проблемам. Существует, однако, интересный способ построения гамм с точки зрения такого направления физики, как акустика. Как и «гармоничную пропорцию» Пифагора, ее столь же упорно и столь же опрометчиво приводили в качестве доказательства превосходства диатонической шкалы в течение нескольких сотен лет.
Тональность характеризуется двумя музыкальными структурами: гаммой и трезвучием, состоящим из нот 1,3 и 5: до-ми-соль в до мажор. В комбинации или пермутации эти три ноты звучат гармонично: они как будто «подходят» друг к другу.[13]
Трезвучие настолько знакомый элемент музыкального аппарата, что легко можно забыть о его не вполне правильном сочетании с точки зрения пифагорова строя. По Пифагору самые «консонантные» интервалы состоят из нот с простым соотношением частот. Этому положению соответствует наличие соль чистой квинты в аккорде до мажор, а также тот факт, что с прибавлением октавы до можно получить большой мажорный аккорд: до-ми-соль-до (если удвоить начальную до, то получится начало фолк-стандарта «On Top of Old Smokey»). Но по системе Пифагора в аккорде должна появиться фа (с соотношением 4:3 к до), а не ми (с соотношением 81:64 в пифагоровом строе). Почему же в данном случае предпочтение было отдано терции, а не чистой кварте?