Движение и зависание топлива в бункерах - Михаил Блехман


Движение и зависание топлива в бункерах


Михаил Блехман

© Михаил Блехман, 2020


Посвящение


Эту книгу я посвящаю памяти моей жены Блехман (Меламуд) Светланы Ароновны (19232017). Благодаря ей я начал и закончил эту книгу.


Аннотация


Большая часть углей, используемая в энергетике, имеет повышенную влажность, высокий процент мелких частиц и примеси породы, включая глину. Такие угли создают серьёзные трудности при их хранении в бункерах.

Результаты наблюдения поведения угля на моделях в большинстве случаев не могут быть перенесены на реальные бункера. В данной книге впервые движение и зависание углей изучалось на реальных бункерах (более 80 бункеров 37 электростанций).

Поведение угля в бункерах определяется его сыпучестью, но, в отличие от других авторов, градация сыпучести топлив основана на единой физической величине τ0 (начальное сопротивление сдвигу материала), а необходимость и объём рекомендуемых мер определяется группой сыпучести.

В ходе обследования обнаружены неизвестные ранее процессы:

1. Изменение скорости и диаметра потока угля по высоте (глубине) бункера.

2. Наличие смежных потоков и этапы образования массового потока.

3. Наличие «вторичного» бункера и зон внутреннего сдвига.

4. Замерены углы сдвига угля и установлено их изменение по глубине бункера.

5. Изучен процесс и условия само обрушения топлива.

6. Установлены формы потока для углей различной сыпучести.

7. Рассматривается узел бункер  питатель.

8. Определена эффективность различных методов улучшения работы бункеров.

9. Рекомендуемые меры основаны на указанной градации топлив. (Каждой группе сыпучести рекомендуются свои мероприятия.) Они включают эксплуатационные и технические меры, эффективность которых проверена на практике.

При выдаче рекомендаций учитывается минимальная стоимость и простота обслуживания.

Coal Flow and stagnancy in Power Station bunkers

Blechman M.E., Engineer.

Abstract

Existing theories on the flow of coal as bulk material in bunkers are based on observations of models and shear tests of the fuel under laboratory conditions. While burning highly moist and coalescent coals such observations and measurements do not correspond to the conditions existing in real bunkers.

This book presents the results of observations of the flow and stagnancy of coal, as a unified process, in real bunkers at more than 23 power stations. The goal of the investigation was to study of processes occurring in the bunkers with the purpose of developing effective measures for solving problems of stagnancy on the walls and the arching of fuel in the outlets of the bunkers.

The program included: collection of data on changes in the moisture content of the coal during different seasons of the year; observations of fuel evacuation; determining the stagnancy zones and their sizes for various levels of moisture content of the fuel; recording and analyzing the processes that occur in the bunker.

Method: measurement of the configuration of the fuel level in the bunkers during its evacuation; measurement of the rate of decrease in fuel levels and the flow velocity in the flow zone of coal; calculation of the main flow diameters from the measured fuel velocity and flow rate; determination of the effective volume of the bunker; calculation of the initial resistance to shear τ0 based on measurements in real bunkers.

Results:

1. A grading of fuels by flowability is proposed.

2. A relationship was found between fuel flowability and the following processes:

a. Variations in the velocity and diameter of the coal flow along the depth of the bunker.

b. The stage at which contiguous flows and mass flow form.

c. The presence of a second bunker.

d. The presence of internal shear.

e. The conditions causing the fuel to cave in.

f. The formation of a stagnant zone.

3. For each flowability class, we determined:

a. The variation in the angle of slip of coal on coal along the depth of the bunker.

b. Coal flow forms for earth group of coal flowability..

c. The effectiveness of various methods for improving the operation of the bunkers.

d. The required measures for improving the operation of the bunkers as a function of the fuel flowability.

Предисловие

1. Книга написана на основе десятилетнего опыта обследования бункеров угля, сланца и торфа в рамках наладочных работ котлов и блоков крупных тепловых электростанций.

Основной объём работ составили угольные электростанции.

2. Отличием предлагаемой книги от аналогичных по данной тематике является большой объём наблюдений на реальных бункерах, что позволило:

 предложить градацию топлив (углей) по сыпучести, основанную на замерах начального сопротивления сдвигу непосредственно в бункерах.

 разработать методику замера скорости потока и применить её на практике.

 зафиксировать этапы сработки.

 определить параметры потока (скорость, диаметр, контур) и его виды.

 определить места максимальных напряжений (зоны сдвига).

 классифицировать потоки по их форме.

3. Несмотря на отличие в поведении топлив в бункерах [Л1] относительно других сыпучих в ходе обработки материалов наблюдений было отмечено и использовано подобие процессов и понятий в других областях:

 механика грунтов  давление в основании, устойчивость, оползни и др.

 гидравлика  поток (скорость, диаметр, расход- производительность, средняя скорость и др.)

4. Название книги вызвано необходимостью отразить процессы, происходящие в бункерах:

 движение частиц.

 сдвиг и обрушение объёмов.

 зависание объёмов.

5. В связи с изменениями в финансовых взаимоотношениях «поставщик угля  потребитель» в РФ некоторые угли, описанные в книге, оказались неконкурентоспособными и не используются для сжигания, а ряд электростанций перешел на сжигание газа или был закрыт.

6. Результаты наблюдений могут быть использованы и для других сыпучих материалов.

Часть 1. Изучение сработки углей в бункерах

Содержание

1. Введение

11. Состояние вопроса

12. Краткий обзор публикаций

13. Терминология

2. Наблюдение движения и зависания топлива в бункерах ТЭС

21. Цель.

22. Методика.

23. Организация наблюдений

3. Градация углей по сыпучести

а. Связность и сыпучесть углей

б. Определение начального сопротивления сдвигу топлив в реальных условиях

в. Градация углей по сыпучести

г. Коэффициент сыпучести

4. Наблюдение сработки углей по группам сыпучести

41. Наблюдение 1. Сработка углей группы УС

42. Наблюдение2. Сработка углей группы СС

43. Наблюдение 3. Сработка углей группы НС

44. Наблюдение 4. Сработка угля в сдвоенных бункерах

45. Наблюдение 5. Образование и развитие потока

5. Вторичный бункер

а. Первичная воронка

б. Вторичная воронка

в. Канал

6. Образование сводов (Arching)

7. Изучение движения угля на модели

71. Наблюдения на плоской модели

72. Выводы к наблюдениям на плоской модели

73. Наблюдения на пространственной модели.

74. Общие выводы к разделу

75. Применимость результатов наблюдений на модели к реальным бункерам

8. Выводы к первой части

9. Приложение 1

1. Введение

11. Состояние вопроса

Книга написана по результатам изучения движения и зависания топлива более 80 бункеров для хранения твёрдого топлива. В тексте уголь представляет поведениевсех трёх видов твёрдого топлива (уголь, сланцы, торф).

Работам по обследованию бункеров предшествовал опрос 37 электростанций, из них: 20 сообщили, что зависание топлива в бункерах  это основная проблема; 16 сообщили, что проблема как в зависании на стенках, так и в образовании сводов на выходе на питатель; и только одна сообщила об отсутствии вышеуказанных проблем. Зависание приводит к сокрушению объёма бункера до 20% от проектного, возможности самовозгорания угля и необходимости почти непрерывной работы двумя нитками топливоподачи без резерва, а образование сводов  к нарушению режима котла, требует привлечения дополнительных рабочих для шуровки, ускоряет износ шаров мельниц и др. Применяемые побудительные устройства не всегда эффективны, так как при их установке часто не учитывают процессы, происходящие в бункерах.

12. Краткий обзор публикаций

Несмотря на большое количество публикаций по данному вопросу, не удалось найти работы, которая содержит наблюдения на реальных бункерах для углей или сходных сыпучих материалов.

Книги [Л1, Л2, Л4]  это классика по данной теме, но во всех этих работах теория движения построена на замерах сопротивления сдвигу в лабораторных условиях и наблюдениях на моделях¸а слипание учитывается только поправочным коэффициентом в расчётах, хотя сопротивление сдвигу в результате слипания углей в корне отличается от сопротивления, вызванного трением угля по углю.

По рекомендациям A. Jenike, (США, [Л1]) с конца 50-х годов на электростанциях США строятся круглые бункера с высокой нижней конической частью, выходящей непосредственно на питатель с углом наклона 74º-75º, выполненной из нержавеющей стали.

Предполагалось, что такая конструкция приведёт к массовому истечению и движению топлива вдоль стен и их полировки. Как признают сейчас американские специалисты, не только нет движения топлива вдоль стен, но наблюдается налипание на этих поверхностях.

13. Терминология

В существующей библиографии [Л1, Л2] движение сыпучих в бункерах определятся как истечение, т. е. прохождение через выходное отверстие и его влияние на движение сыпучего материала в бункере. Понятие «истечение» сохранилось от бункеров, применявшихся на строительных площадках с периодическим открытием и высыпанием (истечением) материала в открытое пространство.

В топливных бункерах нет свободного истечения, т.к выход топлива ограничивается и определяется производительностью питателя. Процессы, происходящие в бункерах, и сопутствующие им положения можно определить следующим образом:

Сработка  вместо истечения. Сработка  это изменение объема топлива в бункере в ходе поступления топлива на питатель. Сработка  более широкое понятие, чем истечение, т.к. кроме движения учитывает зависание, внутренний сдвиг и внешний сдвиг (обрушения).

Зона сработки  часть бункера, из которой поступает топливо на питатель.

Зона сдвига  место в бункере, где создаются условия для перехода топлива из состояния сплошного тела в сыпучий материал.

Зона зависания  часть бункера, в которой осталось топливо при максимальном снижении уровня.

Сдвиг внешний  сдвиг объёма с разрушение связей по граничным контактным поверхностям неподвижной массы иобрушение его в свободное пространство воронки. Наблюдается визуально.

Дальше