В отношении происхождения поля можно сказать, что его рассмотрение имело место еще в ранних философских исследованиях эмоций. А более современная ветвь информатики возникла с помощью статьи об «аффективных вычислениях» Розалинды Пикард (1995 год). Мотивацией для исследования является способность имитирования эмпатии, когда машина будет способна на интерпретирование человеческих эмоций и адаптированию своего поведения, чтобы дать отличающийся адекватностью ответ на эти эмоции.
Важность эмоций и социальных навыков для интеллектуального агента обусловлена:
способностью к обеспечению предсказания действий других, пониманию их мотивов и эмоциональных состояний, позволяющей агенту принимать более правильные решения. Такие понятия, как теория игр, теория принятия решений, требуют, чтобы агент быть в состоянии обнаружить и смоделировать человеческие эмоции;
тем обстоятельством, что ради облегчения взаимодействия человека и компьютера, интеллектуальная машина может захотеть отображать эмоции (даже если она сама не испытывает этих эмоций), чтобы выглядеть более чувствительной к эмоциональной динамике взаимодействия живых людей.
Вычислительное творчество, искусственный общий интеллект и AI-complete
Подполем AI творчество рассматривается как теоретически (в виде философской психологической перспективы), так и практически (в виде специфической реализации систем, генерирующих отличающиеся полезностью новые результаты).
Многие исследователи считают, что их работа в конечном итоге будет включена в машину с искусственным общим интеллектом, сочетающую все упомянутые выше навыки и даже превосходящие человеческие способности в большинстве либо во всех этих областях. Некоторые полагают, что для такого проекта могут потребоваться антропоморфные функции, такие как искусственный мозг или искусственное сознание.
Многие из вышеперечисленных проблем также требуют решения общей разведки. Например, даже конкретные простые задачи, такие как машинный перевод, требуют, чтобы машина читала и записывала на обоих языках (NLP), следуя аргументам автора (причина), зная, о чем говорят (знание), и верно воспроизводя оригинал автора (социальный интеллект).
Проблема, такая как машинный перевод, считается проблемой «AI-complete», но все эти проблемы необходимо решать одновременно ради достижения производительности машины на человеческом уровне.
1.6 Подходы исследования AI. Кибернетика и вычислительная нейронаука
Подходы исследования AI
Единая, объединяющая теория или парадигма в отношении исследования AI фактически отсутствует. Есть много проблем, в отношении которых исследователи не могут достичь согласия. Имеется ряд остающихся без ответа вопросов. Имитируется ли интеллектом искусственным интеллект естественный при изучении нейробиологии или психологии? Имеет ли отношение биология человеческая к исследованиям AI, если птичью биологию относят к авиационной технике? Возможно ли описание интеллектуального поведения, используя простые, элегантные принципы (типа логики или оптимизации)? Или это обязательно требует решения множества абсолютно не связанных друг с другом проблем? Возможно ли воспроизведение интеллекта с помощью применения высокоуровневых символов, походящих на идеи и слова? Может нужна «подсимвольная» обработка?
Джоном Хажлендом, которому принадлежит введение термина GOFAI (Хороший Старомодный Искусственный интеллект), было высказано предположение, что более правильным названием для AI будет название «синтетический интеллект», данное название было принято некоторыми из исследователей.
Стюартом Шапиро произведено подразделение исследования AI на подходы, названные им как вычислительная психология, вычислительная философия и информатика. Использование вычислительной психологии распространяется на проблему создания имитирующих человеческое поведение компьютерных программ. Применение вычислительной философии на решение задачи разработки адаптивного, свободного потока компьютерного ума. Реализацию компьютерных наук он рассматривает как служащую цели создания таких компьютеров, которым под силу выполнение задач, ранее выполнявшихся лишь людьми. В альянсе гуманистическое поведение, ум и действия составляют AI.
Кибернетика и вычислительная нейронаука
В 1940-х и 1950-х годах ряд исследователей исследовали связь между нейробиологией, теорией информации и кибернетикой. Некоторыми из них построены машины, использующие электронные сети для проявления элементарного интеллекта. Многие из этих исследователей собирались на собрания Телеологического общества в Принстонском университете и клуба Ratio в Англии. К 1960 году этот подход оказался в значительной степени заброшенным, хотя его элементы были возрождены в 1980-х годах.
В 1940-х и 1950-х годах ряд исследователей исследовали связь между нейробиологией, теорией информации и кибернетикой. Некоторыми из них построены машины, использующие электронные сети для проявления элементарного интеллекта. Многие из этих исследователей собирались на собрания Телеологического общества в Принстонском университете и клуба Ratio в Англии. К 1960 году этот подход оказался в значительной степени заброшенным, хотя его элементы были возрождены в 1980-х годах.
1.7 Символический AI. Когнитивное моделирование
Символический AI
Когда в 1950-х годах (в их середине) стал возможным доступ к цифровым компьютерам, исследования AI начали изучать возможность того, что человеческий интеллект может быть сведен к манипулированию символами. Исследования были сосредоточены в трех учреждениях. Это Университет Карнеги-Меллона, Стэнфордский университет и Массачусетский технологический институт, и каждым из которых была осуществлена разработка собственного исследовательского стиля. Джоном Хаугеландом данные подходы к AI были названы «добрым старомодным AI».
В 1960-х годах имело место достижение символическими подходами заметных высот успешности при моделировании мышления высокого уровня в не крупных программах демонстрационного типа. Подходы, базой которых была кибернетика или нейронные сети, были отброшены либо отодвинуты на задний план. В 1960-х и 1970-х годах исследователи имели убеждение, что символические подходы в итоге обеспечат создание машины с искусственным общим интеллектом, для них это была цель в их области.
Когнитивное моделирование
Экономистами Гербертом Симоном и Алленом Ньюэллом осуществлялось изучение навыков решения проблем людей. Ими предпринимались попыики их
их формализации, а их работа заложила фундамент области AI, когнитивной науки и исследований в сферах исследований и управления. Их исследовательской командой использовались результаты экспериментов психологического плана в целях разработки программ, имитирующих методы, используемые людьми для решения проблем. Данная традиция, сосредоточенная в Университете Карнеги-Меллона, в итоге завершилась развитием архитектуры Soar в 1980-х годах (в их середине).
1.8 Логический подход. Анти-логические или неряшливые подходы и подход, основанный на знаниях
Логический подход
В противовес Ньюэллу и Саймону, Джон Маккарти полагал, что машинам не надо обеспечивать моделирование человеческой мысли, вместо этого следует попытаться найти суть абстрактных рассуждений и добиться решения проблем, независимо от того, использовались ли людьми одни и те же алгоритмы.
Его лаборатория в Стэнфорде (SAIL) сосредоточилась на использовании формальной логики для решения широкого круга проблем, включая представление знаний, планирование и обучение. Логика была также в центре внимания работы в Университете Эдинбурга и в иных местах в Европе, что привело к разработке языка программирования Prolog и науки логического программирования.
Анти-логические или неряшливые подходы и подход, базирующийся на знаниях
Исследователями из Массачусетского технологического института (такими как Марвин Мински и Сеймур Паперт) было обнаружено, что решению отличающихся сложностью проблем в области видения и обработки естественного языка требуются специальные решения. Они утверждали, что не существует простого и общего принципа (например, логики), который бы охватывал все аспекты интеллектуального поведения. Роджер Шенк описал свои «анти-логические» подходы как «неряшливые» (в отличие от «опрятных» парадигм Стэнфорда). Базы знаний общего пользования являются примером «потрепанного» AI, и они должны быть построены вручную.
Когда в 1970 году появились компьютеры с большими воспоминаниями, разные исследователи начали создавать знания в приложениях AI. Данной «революцией знаний» было положено начало разработке и внедрению экспертных систем (они были введены Эдвардом Фейгенбаумом), самой первой по-настоящему удачной формы программного обеспечения AI.
Революция знаний также была обусловлена осознанием, что многие простые знания будут нуждаться в огромном количестве других знаний.
1.9 Интеграция подходов. Архитектуры агентов и когнитивные архитектуры.
Поиск и оптимизация, математические инструменты, глубокое обучение
Интеграция подходов. Архитектуры агентов и когнитивные архитектуры
Интеллектуальный агент представляет собой систему, воспринимающую свою окружающую среду и предпринимающую действия, максимизирующие свои шансы на успех. Простейшими интеллектуальными агентами являются программы, решающие конкретные проблемы. Более сложные агенты включают отдельных людей и организации людей (например, фирмы).
Парадигма дает исследователям шанс на изучение изолированных проблем и поиск решений, являющихся поддающимися проверке и полезными, без согласия на единый подход.
Решающим определенную проблему агентом может использоваться любой работающий подход. Некоторые агенты являются символическими и логическими, некоторые из них являются суб символическими нейронными сетями, а другими могут использоваться новые подходы. Парадигма также дает исследователям общий язык для общения с иными областями например, с теорией принятия решений и экономикой, также использующими понятия абстрактных агентов.
Парадигма интеллектуального агента стала широко распространенной в 1990-х годах.
Исследователи разработали системы для создания интеллектуальных систем из взаимодействующих интеллектуальных агентов в многоагентной системе.
Система с символическими и суб символическими компонентами представляет собой гибридную интеллектуальную систему, а изучение таких систем интеграцию систем искусственного интеллекта. Иерархическая система управления обеспечивает мост между суб символическим AI на самом низком уровне, реактивным и традиционным символическим AI на самом высоком уровне, где смягченные временные ограничения позволяют обеспечивать моделирование планирования по всему миру.