Действуй, мозг! Квантовая модель разума - Роман Бабкин 26 стр.


Существует несколько формулировок теоремы Гёделя. Ещё больше  изложений её доказательства. И совсем много  её следствий.

Ограничимся кратким пересказом, основанным на анализе теоремы выдающимся математиком Юрием Маниным (подробности см. в его работах11).


Формулируется теорема так: «Полного финитно описываемого набора аксиом в арифметике не существует».


Это утверждение можно выразить иначе, на более привычном языке.


Например:

Можно построить логически непротиворечивую теорию, но нельзя доказать её истинность.


Тогда такое следствие:

Какими бы логичными ни казались, скажем, концепция души или рефлекторная теория мозга, нельзя сформулировать аргументы в пользу того, что они неопровержимо верны.


Или такая формулировка теоремы:

Выразить полностью какую-либо сложную научную теорию при помощи средств любого естественного языка невозможно.


И её следствие:

Если вы не разбираетесь в математике и не собираетесь этого делать, то в случае создания новой научной теории (например, Теории Всего) вы её никогда не поймёте.


Чтобы пояснить, почему формулировка и следствия теоремы Гёделя, выходят так далеко за пределы арифметики, разберёмся с терминами.


Все высказывания (как в математике, так и в любом естественном языке) могут быть неопределёнными и определёнными. О первых сказать, ложны они или истинны, нельзя. О вторых  можно.

Некоторой аналогией тут служит различие между открытыми и закрытыми вопросами. Если вам задают открытый вопрос (начинается с «как», «что такое», «почему» и т.п.), вы не можете содержательно и определённо ответить, сказав «да» или «нет». Однако при ответе на закрытый вопрос («так ли это?», «это случилось там-то?» и т.д.) только эти два варианта имеют смысл.

Таким образом, Гёдель заключил, что все аксиомы в математике  это определённые истинные высказывания (мы назовём их «первичными истинами»). А все, следующие из них высказывания, выраженные на каком-либо естественном языке,  определённые и истинные тоже («вторичные истины»).


Тогда формируются два множества: все «первичные истины» (множество с числом элементов n) и все «вторичные истины» (множество с числом элементов m).


Сформулированный Гёделем вопрос заключается в следующем: можно ли  всегда и во всех случаях  из «вторичной истины» вывести «первичную истину»?

Или так: содержатся ли в наших естественных языках уже все аксиомы, которые мы ещё не успели описать на языке математики?

Короче: существует ли такая формула (способ, правило), которая всегда выводит n из m?

И совсем коротко: nm?


Курт Гёдель использовал доказательство от обратного и начал с предположения, что n = m. Примерная схема рассуждений представлена на рисунке 10.


Получилось, что всегда и строго n> m.


Итак, Гёдель доказал, что абсолютных, сформулированных людьми, истин не существует: ни в математике, ни, тем более, в естественных языках (интуиционисты удовлетворенно кивнули).

Вместе с тем, он ясно показал, что существует некий, возможно, универсальный процесс создания аксиом  как в математике, так и в естественных языках (формалисты продолжили верить).


Этот универсальный процесс создания аксиом  не что иное, как вычисление. (Джордж Буль думал также, однако именно Гёдель в подтверждение тезиса привел весомые аргументы.)

При этом вычисление может производиться любым, имеющим к этому процессу подходящие инструменты, созданием. В том числе  искусственным устройством.


Через пять лет после появления теоремы о неполноте арифметики Алан Тьюринг опубликовал статью, в которой описал то, что сейчас мы называем компьютером.


Нужно иметь в виду, что представленная в этой работе математическая метафора, «машина Тьюринга», не только и не столько абстрактная модель механического вычислительного устройства.

Это, прежде всего, модель вычислений, производимых человеком. В самом начале статьи читаем: «Мы можем сравнить человека в процессе вычисления (in the process of computing) какого-либо действительного числа с машиной, которая ограничена конечным числом состояний». 63

Тьюринг математически описал биологического вычислителя (англ. computor). Точнее: детально изложил процесс арифметических вычислений так, как, по его мнению, это происходит, в общем, у обычного человека, взявшего в руки тетрадку в клеточку и карандаш для решения какой-либо задачки.

Человек вписывает в клеточки начальные символы или цифры; глядя на текущую клеточку, производит в уме элементарную операцию по их преобразованию (складывает, вычитает, умножает, делит); записывает полученный результат в соседнюю клеточку; продолжает последовательное вычисление в соответствие с порядком, который сам же наметил.

Иными словами, он, как сказал бы Гёдель, переводит первоначальное неопределённое высказывание в определённое, затем  в другое определённое и т. д.


Если в качестве символьной системы для записи в клеточки выбрать бинарный код, а в качестве набора управляющих операций  бинарную логику, то получится общая схема вычислений. Получится механический computer, имитирующий язык и логику живого computor.


Как мы обсуждали в начале главы, Алан Тьюринг не считал, что computer может полностью заменить computor. Здесь поясним это утверждение более обстоятельно.


Дело в том, что механический вычислитель не способен имитировать произвольное построение порядка вычислений. Он не создаёт алгоритм сам. Ему всегда требуется образец.

В какой последовательности применять бинарную логику к бинарным символам решает тот, кто вписывает символы в клеточки. Или даёт указания, как это делать: составляет программу машинных действий, даёт искусственному вычислителю образцы алгоритмов.

Это человек.


Заметим, что это прямое следствие теоремы Гёделя.


Применяя строгие механические формулы, которые ссылаются только на себя, истинно-определённое не выводится (или, по Тьюрингу, не вычисляется). Индуктивная проверка есть не универсальный, а специальный инструмент. Не фундаментальный закон, а технология.

Припомним: следуя бинарной логике Буля, мы избежали сомнительного удовольствия ковыряться в противоречивых смыслах, спрятанных в высказывании «Все не люди не смертны». Как нам это удалось? Мы действовали по алгоритму: вычитание  умножение  сложение. Только такой порядок обеспечил определённый и осмысленный результат.

Если б мы нарушили последовательность или, не дай бог, принялись бы, подобно средневековым схоластам, резонерствовать на тему «кто такие не люди?», «что такое смерть?», «что такое жизнь?» и т.п., нам пришлось бы, чтобы прийти к согласию, провести бесконечное число наблюдений.


Но, даже если б мы сделали это, хотя бы в уме, и пришли к некой, абсолютной, истине, которая бы воспринималась нами как полный и окончательный ответ, разъясняющий суть этих понятий, то через некоторое время пришлось бы снова взяться за уточнение  ввязаться в новый диспут.

Ведь, как показал Гёдель, всегда остаётся вероятность, что такие сложные и многозначные понятия, как, например, «люди» и «жизнь», могут дополниться новыми фактами и смыслами. И определить/вычислить их до конца не удастся никогда.


Раз так, то и машина Тьюринга не может этого сделать.

Точнее: она будет это делать, т.к., хоть эти высказывания (числа, функции, задачи) и невычислимы, тем не менее, они вполне реальны. С ними можно производить арифметические операции.

Однако машина Тьюринга будет вычислить их неограниченное время  гораздо дольше, чем Думатель из романа Дугласа Адамса. А именно: вечность.


Вместе с тем, задачи, что машина Тьюринга за конечное время вычислить может, существуют тоже. Они  алгоритмически вычислимы.

Другое дело, что писать алгоритмы для их решения придётся человеку. Потому что и математика, и логика, и новые идеи, как показал Гёдель, суть творческая, бесконечная во времени и по глубине, деятельность.


Прояснение разницы между выводимостью аксиом и их невыводимостью, между вычислимым и невычислимым, между машинным алгоритмом и присущим человеку думанием  несомненная научная заслуга Гёделя и Тьюринга.

Их работы стали предпоследним звеном в длинной цепочке развития идеи вычисляемой дискретности в трудах Лейбница, Буля, Пирса, Кантора, Гильберта, Пуанкаре и других теоретиков.


Оставалось сделать последний шаг: попытаться создать computer (искусственный вычислитель) и computor (живой вычислитель) на практике.

Оставалось сделать последний шаг: попытаться создать computer (искусственный вычислитель) и computor (живой вычислитель) на практике.

«Так выпьем же за кибернетиков!»

В 1966 году в советском комедийном фильме Леонида Гайдая «Кавказская пленница» один из героев произнёс примечательный тост. Он поведал трагическую историю некой принцессы, которая умерла, «потому что совершенно точно сосчитала, сколько зёрен в мешке, сколько капель в море и сколько звёзд на небе». Тост завершался призывом «выпить за кибернетиков!».

В том же году в популярном британском научно-фантастическом сериале «Доктор Кто» впервые появились такие персонажи, как «Киберлюди» (англ. Cybermen). По сюжету эпизода, снятого режиссёром Дереком Мартинусом, это роботизированные, лишенные эмоций существа, которые хотят покорить Землю и превратить её жителей в кибернетические механизмы.


Кто такие кибернетики? И зачем Киберлюдям понадобилось покорять Землю?


Кибернетика  наука, сама себя называвшая «междисциплинарной научной дисциплиной», где сложные объекты и системы, включая человеческий разум, трактуются как вычислительные устройства.


Формально годом её рождения считается 1948.

Именно тогда появилось известное сочинение Норберта Винера «Кибернетика: Или Контроль и Коммуникация у Животных и Машин» (далее  просто «Кибернетика»).

Однако фактически работы, посвященные рассмотрению сложных систем как природных саморегулирующихся автоматов, за авторством Джона фон Неймана, самого Винера и других исследователей, публиковались с 1943 года.57


Кратко обозначим контекст появления кибернетики.


После окончания Второй мировой войны в глазах общественности механическая парадигма оказалась чрезвычайно скомпрометированной.

Всем стало ясно, что от представлений о государствах-машинах, людях-машинах и прочих спекуляций в духе «социальных механизмов» надо отказываться.

Такие взгляды практически всюду были признаны доктринами, мягко говоря, неточно описывающими реальность.


На научном поприще механическая парадигма была плавно вытеснена цифровой парадигмой ещё раньше: фактически к началу 1930х гг.

Назад Дальше