Радон считается предвестником землетрясений. Исходя из этого, Беларусь относили к радонобезопасной территории. Как показали последующие обследования, это далеко не так.
С геологической точки зрения, радоноопасными участками местности являются места геологических разломов. По последним литературным данным более 40 % территории Беларуси относится к разряду радоноопасных, что связано с неглубоким залеганием гранитов кристаллического фундамента, выделяющих радон, а также с широким развитием активных разломных зон и очагов разгрузки подземных минерализованных вод. Исследованиями геофизической экспедиции ПО «Беларусьгеология» аномально высокие содержания радона в почвенном воздухе надразломных зон установлены на Горецко-Шкловском и других участках области. При среднефоновых концентрациях около 1000 Бк/м3 содержание радона в почвенном воздухе зон активного разлома возрастало до 15 000-25 000 Бк/м3.
В Минске выявлено два разлома, пересекающих весь город. Первый по линии Щемыслица Уручье, проходящий примерно через Курасовщину, Минск-Южный, район тракторного завода, Степянку. Второй параллельно линии Семково Сосны, примерно через улицу Енисейскую, район улицы Кошевого, площадь Победы и вторая его часть от площади Независимости вдоль улицы Тимирязева через Веснянку и далее.
Основной источник радона, поступающего в окружающую среду, почва под зданием. Даже при обычных удельных активностях Ra226 в ней объемная активность радона в почвенном воздухе составляет десятки килобеккерелей (кБк). Из почвы под зданием и строительных материалов радон мигрирует по порам и трещинам. Происходящие при этом процессы обусловлены двумя основными механизмами:
диффузией при наличии градиента концентрации радона в среде;
конвекцией, вызванной разностью давлений между внутренним объемом здания и внешней атмосферой, различными частями здания.
В зданиях, где источником водоснабжения является артезианская скважина, расположенная в радоносодержащих горизонтах, потенциальным источником радона может являться вода, используемая для хозяйственных и бытовых нужд, так как при контакте ее с атмосферой помещения (особенно при разбрызгивании воды) активно выделяется в воздух растворенный в ней радон. Выделение радона из воды происходит интенсивнее при большей площади контакта с атмосферой и температуре воды.
Местом проникновения радона могут стать практически любые неплотности в оболочке здания, расположенные ниже уровня земли: трещины в перекрытиях, открытые участки почвы в подвальном помещении или подпольном пространстве, вводы труб и коммуникаций, стыки между плитами и блоками, поры в строительных материалах и др.
Источниками радиоактивного загрязнения городской среды также могут служить материалы и сырье для промышленного производства, горючесмазочные материалы, иные материальные ресурсы, загрязненные радионуклидами.
В связи с этим проблему обеспечения радоновой безопасности селитебной территории города следует решать комплексно.
Все проявления антропогенного нарушения геологической среды городов являются одним из основных факторов техногенного воздействия на биосферу в процессе техногенеза.
Техногенез процесс изменения природных комплексов под воздействием производственной деятельности человека (Реймерс, 1990).
В геохимическом аспекте техногенез проявляется:
в извлечении химических элементов из природной среды и их концентрации;
перегруппировке химических элементов, изменении химического состава соединений, в которые эти элементы входят, а также создании новых веществ;
рассеивании вовлеченных в техногенез химических элементов и веществ в окружающей среде.
Отрицательное действие техногенеза объединяется понятием загрязнение природной среды.
Техногенное воздействие на биосферу связано в основном с интенсивным перемещением веществ техногенными миграционными потоками. Последствием этого являются нарушения в функционировании природно-территориальных комплексов, в том числе и урбанизированных территорий, в связи с изменением их геохимических характеристик и загрязнением продуктами техногенеза.
Интенсивность поступления того или иного химического элемента с техногенными потоками в биосферу определяется интенсивностью его использования в хозяйственной деятельности человека.
Химические элементы используются человечеством в зависимости от хозяйственной ценности по отношению к материальным потребностям; доступностью извлечения и способности элементов концентрироваться в земной коре. Например, алюминий и титан практически не использовались до начала XX в., так как технология извлечения их из минерального сырья была сложной и дорогой для того уровня развития техники. Тогда как руды других металлов образуют месторождения с большими запасами и широко использовались еще в древности.
Одним из существенных показателей использования химических элементов является распространенность, или их кларки в земной коре.
В 20-е гг. XX в. А.Е. Ферсман ввел в геохимию понятие кларка и выявил зависимость интенсивности использования элементов от их положения в Периодической системе Менделеева, т. е. зависимость интенсивности использования элементов от размеров атомов, ионов и их кларков. Им же разработаны таблицы кларков химических элементов в земной коре.
Кларк числовая оценка среднего содержания какого-либо химического элемента в земной коре, гидросфере, атмосфере, Земле в целом, различных типах горных пород, космических объектах и др. Кларк может быть выражен в единицах массы (%, г/т и др.) либо в атомных процентах.
Как бы ни было ценно золото для человечества, его добыча никогда не сравняется с добычей железа, так как кларк золота -4,3-10_7%, а железа 4,65 %. Кремний и германий химические аналоги и оксид германия Ge02 похож на оксид кремния Si02. Но кремний второй по распространенности элемент в литосфере (кларк 29,5 %), а германий редкий элемент (кларк 1,4*10_4%). Поэтому соединения кремния основа практически всех используемых человечеством строительных материалов, а германий добывается в небольшом количестве и используется в основном в электронной промышленности. Если бы кларк германия был бы столь же высок, как у кремния, то и этот элемент нашел бы большое применение.
Степень специального использования химического элемента в техносфере к его содержанию в литосфере характеризует технофильность элемента (ТФ).
Технофильностъю элемента называется отношение его ежегодной добычи к его кларку в литосфере. В принципе можно рассчитать ТФ для отдельной страны, группы стран, всего мира. Естественно, что ТФ является динамическим показателем и может резко изменяться во времени. На рис. 2.1 приведены значения ТФ, используемых в настоящее время человечеством.
Рис. 2.1. Технофильность химических элементов (Глазовская, 1988)
Наибольшей технофильностью обладает углерод (уголь, нефть), поэтому он стал одним из основных источников доступной энергии для человечества.
Химические элементы с резко различными кларками, но сходные в химическом отношении, часто имеют близкую технофильность. Например, у железа кларк 4,65 %, у марганца -0,1 %, а технофильность их одинаковая 6·107%.
Технофильность элементов колеблется в миллионы раз от 8·1011 у углерода до 1·103 у иттрия, но контрасты в кларках элементов составляют многие миллиарды (n·101 n·1010). Наиболее высокую глобальную технофильность имеют Cl, С, она весьма высока у Pb, Sb, Zn, Си, Sn, Mo, Hg (см. рис. 2.1).
Именно поэтому человеческая деятельность в биосфере приводит к уменьшению геохимической контрастности техносферы по сравнению с биосферой и земной корой.
Другим количественным показателем значимости элемента является его общее техногенное использование, или техногенносте (ТГ):
ТГ = (М1 + М2)/К,
где М1 и М2 соответственно степень вовлечения элемента в техногенные потоки для специального использования и в качестве побочных продуктов (отходов); К кларк элемента в биосфере.
Показатель техногенности количественно характеризует степень общего вовлечения элемента в техногенные потоки в отличие от технофильности, характеризующей только степень его специального вовлечения.
Отношение показателей технофильности к техногенности элемента характеризуется коэффициентом полноты техногенного использования:
Р = ТФ/ТГ.
Кроме этих показателей, характеризующих интенсивность использования, а следовательно, количество элементов в техногенных потоках, существуют удельные показатели техногенного геохимического давления (Д) и модуль техногенного давления (МД):
Д = М1 + М2, т/год, МД = Д /S, т/год·км2,
где S площадь рассматриваемого региона, км2.
В табл. 2.6 и 2.7 приведены данные по количественной оценке коэффициента полноты техногенного использования (Р) и модуля техногенного давления (МД) для современной техносферы Земли.
Таблица 2.6. Значение коэффициента полноты техногенного использования для современной техносферы (Глазовская, 1988)
Таблица 2.7. Значение величины модуля техногенного давления для современной техносферы (Глазовская, 1988)
Для многих элементов миграция в виде попутных примесей превышает их специальную добычу (As, U, S, V, Be, Se, I, Ge, Ті).
Техногенное давление определяется использованием в техносфере различных видов сырья. В глобальных масштабах с использованием угля непосредственно связано техногенное рассеивание Be, В, S, V, Mn, Ge, Ga, As, Se, Ag, Cd, U, W; для нефти Li, S, Br, Cd, I; минерального сырья Сг, Cu, Zn, Bi, Hg, Pb, Ni, Cl, Na, P, B, S.
Наибольшее техногенное давление присуще Na, Cl, Ca, Fe, S, N, К, причем рассеивание серы (в основном в виде оксидов) приводит к кислотному загрязнению атмосферных осадков и поверхностных вод, N и К к увеличению содержания в водоемах питательных веществ (эвтрофикация водоемов) и нарушению в них экологического равновесия (бурное развитие цианобактерий).
Наибольшее техногенное давление присуще Na, Cl, Ca, Fe, S, N, К, причем рассеивание серы (в основном в виде оксидов) приводит к кислотному загрязнению атмосферных осадков и поверхностных вод, N и К к увеличению содержания в водоемах питательных веществ (эвтрофикация водоемов) и нарушению в них экологического равновесия (бурное развитие цианобактерий).
На основании этих данных определяются технобиологические пространственные физико-географические единицы, обладающие сходной реакцией на одно и то же геохимическое воздействие. Они являются основой для создания схем районирования территории по вероятной интенсивности самоочищения от продуктов техногенеза. К показателям вероятностной интенсивности самоочищения территории от продуктов техногенеза (загрязнений) относятся: частота штилей, величина стока, величина ультрафиолетовой радиации (чем больше УФ-радиа-ция, тем больше интенсивность разложения загрязняющих веществ), число дней с грозами (озон, выделяющийся при грозе, также ускоряет разложение) и другие, т. е. все те физико-химические, микробиологические и биологические процессы, способствующие повышению и интенсификации естественных механизмов самоочищения территории. Аналогично разрабатываются схемы районирования территории по вероятной интенсивности разложения органических продуктов техногенеза в почвах. В них основными показателями являются энергия и время разложения растительного опада, щелочно-кислотные и окислительно-восстановительные условия, а также другие, непосредственно зависящие от свойств почвенного покрова.