Поворотные времена. Часть 2 - Ахутин Анатолий Валерианович 20 стр.


Отношение включения по принципу соответствия сталкивается здесь с отношением сосуществования по принципу дополнительности. Классическая механика содержится в теории относительности и в квантовой механике как предельный случай, когда скорость света можно считать бесконечно большой или соответственно планковский квант действия бесконечно малым. Ho классическая механика и отчасти электродинамика необходимы также и «как априорное основание для описания экспериментов»168.

История классической физики раскрывается при этом не просто как путь к единой универсальной точке зрения, а как совокупность различных самостоятельных систем, развертывающих разные способы теоретической объективации реальности. Опыт квантовой механики позволил увидеть эту внутреннюю неоднородность классической физики. «На здание точных естественных наук едва ли можно смотреть как на связное единое целое,  говорит Гейзенберг в докладе 1934 г.  Простое следование предписанному маршруту от какой-либо данной точки не приводит нас во все другие части этого здания. Это объясняется тем, что здание состоит из отдельных специфических частей; и хотя каждая из них связана с другими посредством многих переходов и может окружать другие части или быть окруженной ими, тем не менее она представляет собой замкнутое в себе обособленное единство. Переход от одной уже законченной части к другой, только что открытой или вновь возникшей, всякий раз требует новых умственных усилий, которые должны быть направлены уже не на простое естественное развитие имеющихся представлений»169.

Механика точки, статистика и волновая теория суть три необходимых и не сводимых друг к другу способа описания экспериментов и теоретического представления квантовой реальности. Соответственно классическая механика, статистическая физика и электродинамика вновь восстанавливаются в своих правах как самостоятельные и универсальные· теоретические миры разные способы теоретического представления реальности вообще.

Ho что же значит это сосуществование равно истинных и все же исключающих друг друга теоретических миров-представлений, совокупность которых необходима для описания реальности? Как вообще возможна такая координация теоретических систем?

Гейзенберг напоминает в этой связи одно по видимости простое и тем не менее редко продумываемое до конца обстоятельство. «Если мы описываем группу связей,  говорит он,  с помощью замкнутой связной системы аксиом, определений и законов, что, в свою очередь, может быть представлено в виде математической схемы, то мы фактически изолируем и идеализируем эту группу связей с целью их научного изучения. Ho даже если достигнута полная ясность, то всегда остается еще неизвестным, насколько точно соответствует эта система понятий реальности»170. «Изолируем и идеализируем»: экспериментально (искусственно) изолируем и теоретически идеализируем определенную группу связей (а не группу явлений), которую мы, собственно, и изучаем в качестве сущностных структур природы. В этом главное.

Механика точки, статистика и волновая теория суть три необходимых и не сводимых друг к другу способа описания экспериментов и теоретического представления квантовой реальности. Соответственно классическая механика, статистическая физика и электродинамика вновь восстанавливаются в своих правах как самостоятельные и универсальные· теоретические миры разные способы теоретического представления реальности вообще.

Ho что же значит это сосуществование равно истинных и все же исключающих друг друга теоретических миров-представлений, совокупность которых необходима для описания реальности? Как вообще возможна такая координация теоретических систем?

Гейзенберг напоминает в этой связи одно по видимости простое и тем не менее редко продумываемое до конца обстоятельство. «Если мы описываем группу связей,  говорит он,  с помощью замкнутой связной системы аксиом, определений и законов, что, в свою очередь, может быть представлено в виде математической схемы, то мы фактически изолируем и идеализируем эту группу связей с целью их научного изучения. Ho даже если достигнута полная ясность, то всегда остается еще неизвестным, насколько точно соответствует эта система понятий реальности»170. «Изолируем и идеализируем»: экспериментально (искусственно) изолируем и теоретически идеализируем определенную группу связей (а не группу явлений), которую мы, собственно, и изучаем в качестве сущностных структур природы. В этом главное.

Всякая теория строится на абстракции, на целенаправленном отборе из бесконечного богатства опыта определенного типа связей. Понятия теории непосредственно схематизируются в этих связях, образующих мир идеальных объектов, предметный мир теории. Ньютоновскую механику можно с этой точки зрения представить как единый большой эксперимент, начатый трудами Галилея,  эксперимент, практически преобразующий и теоретически рассматривающий природу под определенным углом зрения, при определенных условиях, а именно так, как если бы ее можно было представить движением и взаимодействием точечных масс171. Электродинамика, строящаяся на экспериментах иного рода, изолирующая иного рода связи (полевые), задает свой угол зрения, свою возможность идеализации реальности, предельно развернутую в теории относительности.

Ясно, что возможность такого понимания истории физики прямое следствие уяснения «логической ситуации» квантовой механики. Именно здесь оказалось крайне важным понять, что всякая теоретически объективная (классическая) картина, всякий мир объектов есть результат практической (технической) абстракции, идеализируемой в теории изоляции одних возможных связей реальности за счет других. Мы видим, как крепко связаны здесь анализ понятий, философское осмысление природы научного мышления и концептуализации истории науки. Об этой связи я, собственно, и толкую в данной статье.

Вся сложность в том, что существенное различие историко-научных концепций Эйнштейна и Гейзенберга отнюдь не столкновение их личных взглядов. Противоборство этих «историй» коренится глубоко в природе самого теоретического мышления. Оно поэтому, как мы уже отмечали, присуще историко-научным размышлениям самого Гейзенберга. Координация замкнутых систем при описании реальности,  связанная с принципом дополнительности,  никак не исключает картины их последовательной субординации на основе принципа соответствия. Современная теоретическая физика развивается целиком под знаком «великого объединения» в смысле общей теории поля и эрлангенского понимания истории теоретических систем. Понятие замкнутых систем в концепции Гейзенберга не столько разрушает, сколько усложняет этот классический образ развития физики и делает его многомерным.

Ясно, что рациональная реконструкция истории физики Гейзенберга, как и «Эволюция физики» Эйнштейна и Инфельда, сама является идеализацией, предназначенной для того, чтобы кое-что понять в этой истории, а не просто ее описывать. Насколько они не исчерпывают возможности подобной реконструкции, показывает, например, история классической физики в представлении Луи де Бройля, которую я вкратце изложу, чтобы оттенить оригинальность концепции Гейзенберга еще с одной стороны.

Исходной точкой для де Бройля была та же квантовая механика, но его позиция дала ему особую точку зрения, столь же классически ориентированную, как и позиция Эйнштейна, но содержательно иную. В его реконструкции развитие физических понятий обнаруживает неожиданные стороны.

Исходной точкой для де Бройля была та же квантовая механика, но его позиция дала ему особую точку зрения, столь же классически ориентированную, как и позиция Эйнштейна, но содержательно иную. В его реконструкции развитие физических понятий обнаруживает неожиданные стороны.

Отправную точку де Бройль находит в понятии кванта действия. Установив возможность с помощью этого понятия связать воедино корпускулярное и волновое представления движения, де Бройль кладет в основу исторической реконструкции само понятие действия. Эта путеводная нить позволяет ему усмотреть истоки подобного объединения в недрах аналитической механики. Вся история классической физики предстает в его глазах как «введение в квантовую физику»172. Развитие физики оказывается рядом последовательных приближений, ступеней, прямо ведущих к созданию волновой механики.

С самого начала он замечает принципиальную независимость кинематических и динамических определений в ньютоновской механике. Развитие аналитической механики, в особенности в трудах У. Гамильтона и К. Якоби, направлено на устранение этой независимости путем выдвижения на первый план понятий энергии и действия (величины, выражающейся произведением канонически сопряженных величин: энергии на время, импульса на путь). С этой точки зрения открытие кванта действия только подтвердило необходимость связи кинематических и динамических определений, а значит, и верность именно такого пути построения механики.

Анализируя эквиэнергетические семейства траекторий движения материальных точек в постоянном силовом поле, Якоби описывает движение механической системы так, что его уравнения оказываются в ближайшем соответствии с уравнениями геометрической оптики, описывающими лучевое распространение волн173. В результате обнаруживается любопытная аналогия между механическим принципом наименьшего действия Мопертюи и принципом наименьшего времени Ферма. «Теория Якоби,  пишет де Бройль,  очень прозрачно намекает на идею о сходстве траектории частиц с лучом некой волны, отождествляя интеграл действия частицы с волновым интегралом Ферма, так что принцип наименьшего действия совпадает с принципом минимального времени»174.

В развитии оптики также можно усмотреть соответствующую эквивалентность двух физически различных моделей корпускулярно-лучевой теории Декарта Ньютона и волновой теории, берущей начало в работах X. Гюйгенса и после работ О. Френеля в начале XIX в. получившей доминирующее значение.

В итоге новая «волновая механика» может быть понята как точка слияния этих разнородных течений теоретической мысли, как тот синтез, который впервые позволил понять природу их глубокого родства175. Основные «классические» ступени, ведущие к новой механике, грубо говоря, таковы:

1) связь кинематических и динамических определений в принципе наименьшего действия;

2) связь геометро-оптического представления механики (Якоби) с волновой оптикой путем сближения принципа наименьшего действия с принципом наименьшего времени;

Назад Дальше