Общая вирусология с основами таксономии вирусов позвоночных - Коллектив авторов 20 стр.


Терминация. Процесс завершения трансляции происходит в тот момент, когда 80S рибосома сталкивается в рамке считывания с терминирующим кодоном в пределах последовательности мРНК. Терминирующий кодон является фактором, который запускает процесс гидролиза связи пептидной цепи и тРНК, освобождает синтезированный полипептид от 80S рибосомы и разобщает субъединицы рибосомы. Как только завершение синтеза произошло, 40S субъединица может продолжить сканировать мРНК.

При считывании мультицистронной последовательности завершение трансляции может сопровождаться переинициированием трансляции ниже расположенного гена. Завершение трансляции переинициированием распространено среди вирусов и используется ими, чтобы управлять синтезом определенного генного продукта. После открытия полиаденилирования э-мРНК стало ясно, что поли-A трек играет важную роль в трансляции мРНК в клетках эукариот. Современные исследования показали, что определенную роль в стимулирующей функции поли-A трека на процесс трансляции играет поли-A-связывающий белок (PABP). В клетках животных PABP взаимодействует с элементами кэп-связывающего комплекса, включая в его состав 5 конец мРНК и создавая, таким образом, трансляционный комплекс в форме «закрытой петли» (рисунок 17).

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

мРНК связующий EIF4F инициирующий комплекс взаимодействует с 3 концом мРНК через PABP. Поли-A последовательность в пределах 3-НТР прямым образом связывает PABP с мРНК. PABP добивается взаимодействия с кэпсвязывающим комплексом непосредственно через eIF4G (4G) или косвенно через взаимодействие eIF4G, eIF4A (4A) и Paip-1. Сборка комплекса замкнутой системы может стабилизировать взаимодействие 40S субъединицы рибосомы с мРНК.


Рисунок 17 Модель трансляционного комплекса в замкнутой системе с мРНК


PABP формирует закрытую петлю путем связывания eIF4G и белка Paip-1. Paip-1 взаимодействует с компонентами кэп-связывающего комплекса мРНК, включая eIF4G и eIF4A-хеликазу. Изучение инициации трансляции в дрожжах и растениях показали, что взаимодействие между PABP и eIF4G стимулирует трансляцию мРНК. Сближение концов мРНК, обеспеченное закрытым трансляционным комплексом, вносит вклад в стабильность мРНК и 5-кэп-комплекса и обеспечивает эффективную сборку полирибосом. Таким образом, полный эффект закрытой петли заключается в увеличении эффективности трансляции. Вирусы используют закрытый трансляционный комплекс как средство переключения трансляционного аппарата клетки на трансляцию вирусных мРНК путем разрушения или модификации РАВР.

4 Репродукция вирусов

Процесс репродукции вирусов может быть условно разделен на две фазы. Первая фаза охватывает события, которые ведут к адсорбции и проникновению вируса в клетку, освобождению его внутреннего компонента и модификации его таким образом, что он способен вызвать инфекцию. Соответственно, первая фаза включает в себя три стадии:

1) адсорбция вируса на клетках;

2) проникновение в клетки;

3) раздевание вируса в клетке.

Эти стадии направлены на то, чтобы вирус был доставлен в соответствующие клеточные структуры, и его внутренний компонент был освобожден от защитных оболочек. Как только эта цель достигнута, начинается вторая фаза репродукции, в течение которой происходит экспрессия вирусного генома. Эта фаза включает в себя стадии:

1) транскрипции;

2) трансляции информационных РНК;

3) репликации генома;

4) сборки вирусных компонентов. Заключительной стадией репродукции является выход вируса из клетки.

4.1 Адсорбция

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т.е. прикрепления вирусных частиц к клеточной поверхности. Процесс адсорбции возможен при наличии соответствующих рецепторов на поверхности клетки и «узнающих» их субстанций на поверхности вируса. Самые начальные процессы адсорбции имеют неспецифический характер, и в основе их может лежать электростатическое взаимодействие положительно и отрицательно заряженных группировок на поверхности вируса и клетки. Однако узнавание клеточных рецепторов вирусными белками, ведущее к прикреплению вирусной частицы к клетке, является высоко специфическим процессом. Белки на поверхности вируса, узнающие специфические группировки на плазматической мембране клетки и обусловливающие прикрепление к ним вирусной частицы, называются прикрепительными белками (рисунок 18).

Вирусы используют рецепторы, предназначенные для прохождения в клетку необходимых для ее жизнедеятельности веществ: питательных веществ, гормонов, факторов роста и т.д. Рецепторы могут иметь разную химическую природу и представлять собой белки, углеводный компонент белков и липидов, липиды. Рецепторами для вирусов гриппа и парамиксовирусов является сиаловая кислота в составе гликопротеидов и гликолипидов (ганглиозидов), для рабдовирусов и реовирусов также углеводный компонент в составе белков и липидов, для пикорна- и аденовирусов белки, для некоторых вирусов липиды. Специфические рецепторы играют роль не только в прикреплении вирусной частицы к клеточной поверхности. Они определяют дальнейшую судьбу вирусной частицы, ее внутриклеточный транспорт и доставку в определенные участки цитоплазмы и ядра, где вирус способен инициировать инфекционный процесс. Вирус может прикрепиться и к неспецифическим рецепторам и даже проникнуть в клетку, однако только прикрепление к специфическому рецептору приведет к возникновению инфекции.


а узнавание клеточных рецепторов вирусными белками, ведущее к прикреплению вирусной частицы к клетке; б прикрепление вируса к клетке.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

а узнавание клеточных рецепторов вирусными белками, ведущее к прикреплению вирусной частицы к клетке; б прикрепление вируса к клетке.

Рисунок 18 Адсорбция вируса на клетке


Прикрепление вирусной частицы к клеточной поверхности вначале происходят путем образования единичной связи вирусной частицы с рецептором. Однако такое прикрепление непрочно, и вирусная частица может легко оторваться от клеточной поверхности (обратимая адсорбция). Для того чтобы наступила необратимая адсорбция, должны появиться множественные связи между вирусной частицей и многими молекулами рецепторов, т.е. должно произойти стабильное мультивалентное прикрепление. Количество молекул клеточных рецепторов в участках адсорбции может доходить до 3000. Стабильное связывание вирусной частицы с клеточной поверхностью в результате мультивалентного прикрепления происходит благодаря возможности свободного перемещения молекул рецепторов в липидном бислое плазматической мембраны, которое определяется подвижностью, «текучестью» белково-липидного слоя. Увеличение текучести липидов является одним из наиболее ранних событий при взаимодействии вируса с клеткой, следствием которого является формирование рецепторных полей в месте контакта вируса с клеточной поверхностью и стабильное прикрепление вирусной частицы к возникшим группировкам необратимая адсорбция.

Количество специфических рецепторов на поверхности клетки колеблется между 104 и 105 на одну клетку. Рецепторы ряда вирусов могут быть представлены лишь в ограниченном наборе клеток-хозяев, и этим может определяться чувствительность организма к данному вирусу. Например, пикорнавирусы адсорбируются только на клетках приматов. Рецепторы для других вирусов, напротив, широко представлены на поверхности клеток различных видов, как, например, рецепторы для ортомиксовирусов и парамиксовирусов, представляющие собой сиалилсодержащие соединения. Поэтому эти вирусы имеют относительно широкий диапазон клеток, на которых может происходить адсорбция вирусных частиц. Рецепторами для ряда тогавирусов обладают клетки исключительно широкого круга хозяев: эти вирусы могут адсорбироваться к инфицировать клетки, как позвоночных, так и беспозвоночных.

Наличие специфических рецепторов на поверхности клетки в ряде случаев обусловливает феномен зависимого от хозяина ограничения, т.е. способность вируса заражать лишь определенные виды животных. В целом ограничения при взаимодействии рецепторных систем вируса и клетки биологически оправданы и целесообразны, хотя в ряде случаев они являются «перестраховкой». Так, многие линии клеток, устойчивых к вирусам полиомиелита и Коксаки, можно заразить депротеинизированными препаратами РНК, выделенными из этих вирусов. Такое заражение клеток идет в обход естественных входных путей инфекции через взаимодействие с клеточными рецепторами. Известна потенциальная способность вирусов животных реплицироваться в протопластах дрожжей, грибов и бактерий, а бактериофагов в клетках животных. Таким образом, вирусные ДНК и РНК обладают способностью заражать и более широкий круг хозяев, чем вирусы.

Вирусные прикрепительные белки. Прикрепительные белки могут находиться в составе уникальных органелл, таких как структуры отростка, у Т-бактериофагов или фибры у аденовирусов, которые хорошо видны в электронном микроскопе; могут формировать морфологически менее выраженные, но не менее уникальные аранжировки белковых субъединиц на поверхности вирусных мембран, как, например, шипы у оболочечных вирусов, «корону» у коронавирусов.

Просто организованные вирусы животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов эти белки входят в состав суперкапсида и представлены множественными молекулами. Например, у вируса леса Семлики (альфа-вирус) имеется 240 молекул гликопротеида в одном вирионе, у вируса гриппа 300-450 гемагглютинирующих субъединиц, у реовируса 24 молекулы белка, у аденовируса 12 фибров.

4.2 Проникновение вирусов в клетку

Исторически сложилось представление о двух альтернативных механизмах проникновения в клетку вирусов животных путем виропексиса (эндоцитоза) и путем слияния вирусной и клеточной мембран (рисунок 19). Однако оба эти механизма не исключают, а дополняют друг друга.

Термин «виропексис», предложенный в 1948 г. Фазекасом де сан Гро, означает, что вирусная частица попадает в цитоплазму в результате инвагинации участка плазматической мембраны и образования вакуоли, которая содержит вирусную частицу.

КОНЕЦ ОЗНАКОМИТЕЛЬНОГО ОТРЫВКА

4.2 Проникновение вирусов в клетку

Исторически сложилось представление о двух альтернативных механизмах проникновения в клетку вирусов животных путем виропексиса (эндоцитоза) и путем слияния вирусной и клеточной мембран (рисунок 19). Однако оба эти механизма не исключают, а дополняют друг друга.

Термин «виропексис», предложенный в 1948 г. Фазекасом де сан Гро, означает, что вирусная частица попадает в цитоплазму в результате инвагинации участка плазматической мембраны и образования вакуоли, которая содержит вирусную частицу.

Назад Дальше