1.1.1. Математика/статистика
На начальном уровне математика и статистика являются базой в работе с данными. Мы разделяем эту базу на три уровня знания:
Существование методов. Если вы не знаете о какой-либо возможности, вы не можете ее использовать. Если дата-сайентисту нужно сгруппировать похожих клиентов, знание того, что это можно сделать статистическим методом (с помощью кластерного анализа), станет первым шагом.
Как применять методы. Специалист по работе с данными должен не просто знать много методов он должен различать нюансы их применения. Важно писать такой код, где они не только применяются, но и настраиваются. Если дата-сайентист хочет использовать кластеризацию методом k-средних, чтобы сгруппировать покупателей, он должен уметь делать это на языке программирования типа R или Python. Также он должен понимать, как настроить параметры метода, например как выбрать количество создаваемых групп.
Как выбрать подходящий метод. В DS используется огромное количество методов, поэтому для дата-сайентиста важно быстро оценить, какой из них будет самым эффективным в каждом случае. В нашем примере с группировкой покупателей, даже если специалист сосредоточился на кластеризации, он может применять десятки различных методов и алгоритмов. Вместо того чтобы перебирать все доступные методы, он должен сразу отбросить бо́льшую их часть и сосредоточиться всего на нескольких.
Как выбрать подходящий метод. В DS используется огромное количество методов, поэтому для дата-сайентиста важно быстро оценить, какой из них будет самым эффективным в каждом случае. В нашем примере с группировкой покупателей, даже если специалист сосредоточился на кластеризации, он может применять десятки различных методов и алгоритмов. Вместо того чтобы перебирать все доступные методы, он должен сразу отбросить бо́льшую их часть и сосредоточиться всего на нескольких.
Эти типы навыков постоянно применяются в задачах по работе с данными. Приведем другой пример. Предположим, вы работаете в компании, занимающейся e-commerce. Ваш бизнес-партнер может поинтересоваться, в каких странах у вас самый большой средний чек. Это очень простой вопрос, если у вас есть готовые данные. Но вместо того, чтобы просто предоставить информацию и позволить партнеру делать выводы самостоятельно, вы можете копнуть глубже. Если у вас есть один заказ из страны А на $100 и тысяча заказов из страны Б средней стоимостью $75, то формально в стране А средний чек выше. Но можете ли вы с уверенностью сказать, что ваш бизнес-партнер должен вложиться в рекламу в стране А, чтобы увеличить количество заказов? Вряд ли. У вас есть только одна единица данных из этой страны, и она может оказаться статистически незначимой. А вот если бы у вас было 500 заказов из страны А, можно было бы протестировать разницу в стоимости заказов. Это значит, что, если бы эти показатели для стран А и Б действительно не различались, вы бы не получили прежний результат. В этом длинном примере дается оценка того, какие подходы были разумными, что следует учитывать и какие результаты были признаны несущественными.
1.1.2. Базы данных и программирование
Программирование и базы данных (БД) основываются на извлечении информации из БД компаний и написании чистого, эффективного, легко настраиваемого кода. Эти навыки во многом схожи с тем, что должен знать разработчик программного обеспечения. Вот только дата-сайентисты должны писать код, который выполняет анализ с неизвестным итогом, а не выдает заранее заданный результат. Стек данных каждой компании уникален, поэтому какой-то определенный набор технических знаний специалисту не нужен. В целом вам нужно уметь получать данные из базы, очищать их, обрабатывать, обобщать, визуализировать и обмениваться ими.
R и Python основные языки программирования для большинства профессий DS. R берет свое начало в статистике и, как правило, лучше всего подходит для статистического анализа, моделирования, визуализации и составления отчетов. Python создавался как язык для разработки программного обеспечения и в дальнейшем приобрел огромную популярность в обработке данных. Python лучше R справляется с обработкой больших датасетов, проводит машинное обучение и поддерживает алгоритмы, работающие в реальном времени (например, модули рекомендаций в Amazon). Но благодаря вкладу многих участников возможности двух языков сейчас почти равны. Специалисты по работе с данными успешно используют R для создания моделей машинного обучения, запускаемых миллионы раз в неделю, а также делают чистый, презентабельный статистический анализ на Python.
R и Python наиболее популярны для обработки данных по нескольким причинам:
Они бесплатны, и у них открытый исходный код. Это означает, что он создается многими участниками, а не одной определенной компанией или группой пользователей. В этих языках есть много пакетов, или библиотек (готовых блоков кода), которые можно использовать для сбора данных, их обработки, визуализации, статистического анализа и машинного обучения.
Благодаря большому количеству пользователей каждого из этих языков дата-сайентистам легко найти помощь при возникновении проблем. И хотя в каких-то компаниях до сих пор используют SAS, SPSS, STATA, MATLAB или другие платные приложения, многие из них начинают переходить в своей работе на R или Python.
Хотя бо́льшая часть анализа при обработке данных осуществляется на R или Python, часто приходится извлекать информацию из БД, и здесь на сцену выходит язык SQL. SQL это язык программирования, который используется в большинстве БД для внутренней обработки данных и извлечения их из базы. Представим для примера дата-сайентиста, которому нужно проанализировать сотни миллионов записей о заказах клиентов компании и спрогнозировать, как со временем будет изменяться ежедневное количество заказов. Для начала он, скорее всего, напишет SQL-запрос для получения количества заказов за каждый день, после чего возьмет полученные данные и запустит статистический прогноз на R или Python. По этой причине SQL очень популярен в Data Science, и без знания этого языка вы далеко не продвинетесь.
Хотя бо́льшая часть анализа при обработке данных осуществляется на R или Python, часто приходится извлекать информацию из БД, и здесь на сцену выходит язык SQL. SQL это язык программирования, который используется в большинстве БД для внутренней обработки данных и извлечения их из базы. Представим для примера дата-сайентиста, которому нужно проанализировать сотни миллионов записей о заказах клиентов компании и спрогнозировать, как со временем будет изменяться ежедневное количество заказов. Для начала он, скорее всего, напишет SQL-запрос для получения количества заказов за каждый день, после чего возьмет полученные данные и запустит статистический прогноз на R или Python. По этой причине SQL очень популярен в Data Science, и без знания этого языка вы далеко не продвинетесь.
Можно ли стать дата-сайентистом без программирования?
С данными можно успешно проделывать много вещей, используя только Excel, Tableau или другие BI-инструменты с графическими интерфейсами. Хотя код в них не пишется, часто заявляется, что этот софт так же функционален, как и программирование на R или Python. На самом деле многие дата-сайентисты действительно порой пользуются этими программами. Но могут ли они быть исчерпывающим набором инструментов? Мы говорим «нет». В реальности компаний, где DS-командам не приходится писать код, очень мало. Но даже если вам повезет оказаться в одной из них, у программирования все же есть ряд плюсов.
Первое преимущество программирования воспроизводимость. Когда вы пишете код, а не пользуетесь программным обеспечением типа point-and-click, можно повторно запускать его при изменении данных хоть каждый день, хоть через полгода. Это преимущество также связано с контролем версий: вместо того чтобы переименовывать файл каждый раз при изменении кода, можно сохранить один файл и видеть всю его историю.
Второе преимущество гибкость. Например, если в Tableau нет нужного вам типа графа, вы не сможете его создать. Но с помощью программирования можно написать собственный код, чтобы сделать то, о чем создатели и разработчики программных средств никогда даже не думали.
Третье и последнее преимущество языков с открытым исходным кодом, таких как Python и R, это вклад в сообщество. Тысячи людей создают пакеты и публикуют их в открытом доступе на GitHub и/или CRAN (для R) и pip (для Python). Этот код можно скачать и использовать для решения своих задач. Так вы не зависите от числа функций, предлагаемых одной компанией или группой людей.
Другой ключевой навык использование контроля версий для отслеживания изменений кода. Он позволяет организовать хранение файлов, выполнять откат до предыдущих версий и видеть, кто, когда и какие изменения вносил в файл. Этот навык чрезвычайно важен в Data Science и в разработке программного обеспечения. Например, если кто-то случайно изменил файл и испортил ваш код, вы можете восстановить его или посмотреть, что изменилось.
Безусловно, наиболее популярная система для контроля версий это Git. Он часто используется вместе с GitHub, веб-службой хостинга для Git. Git позволяет сохранять (фиксировать) вносимые изменения, а также видеть всю историю проекта и то, как она менялась с каждой фиксацией. Если два человека по отдельности работают над одним и тем же файлом, Git гарантирует, что чья-либо работа не будет случайно удалена или перезаписана. Если вы захотите поделиться своим кодом или запустить что-то в производство, во многих компаниях вам обязательно потребуется Git, особенно если это компания с сильной командой проектировщиков.
1.1.3. Понимание бизнеса
Любая достаточно развитая технология неотличима от магии.
Артур Чарльз КларкУ компаний, мягко говоря, разное понимание того, как работает Data Science. Часто руководство просто хочет решить определенную задачу и обращается к своим волшебникам DS. Основной навык, необходимый в Data Science, это умение преобразовать бизнес-ситуацию в вопрос о данных, найти ответ на их основе и предоставить бизнес-решение. Бизнесмен может спросить: «Почему наши клиенты уходят?» Но у Python нет импортируемого пакета «почему уходят клиенты» вы сами должны понять, как ответить на этот вопрос с помощью данных.
Понимание бизнеса это та грань, где ваши идеальные представления о Data Science встречаются с условиями реального мира. Недостаточно просто запросить информацию, не зная, как данные хранятся и обновляются в конкретной компании. Если компания предоставляет услуги по подписке, то где хранятся данные? Что произойдет, если кто-то изменит свою подписку? Обновляется ли строка этого пользователя или в таблицу добавляется еще одна? Нужно ли вам исправить какие-либо ошибки или несоответствия в данных? Если вы не знаете всего этого, вы не сможете дать точный ответ на такой простой вопрос, как: «Сколько у нас было подписчиков на 2 марта 2019 года?»