В начале второго десятилетия XXI века нет необходимости доказывать, что наука и техника развиваются в тесной взаимозависимости друг с другом. Научно-технический прогресс органически объединяет развитие науки и техники. Однако так было не всегда. Сегодня превращение науки (той ее части, которая связана с производством, оказывает прямое воздействие на него) в непосредственную производительную силу означает, что каждый очередной шаг в развитии техники опирается на предшествующую ему научную разработку, что технический прогресс становится материализацией прогресса научного. Сам же научный прогресс немыслим без использования новой техники исследования и обработки данных, установок, научных приборов, воплощающих высшие достижения техники. Без современных технических устройств, например, невозможно изучение физики элементарных частиц, так как невооруженный человеческий глаз просто не может их увидеть. Кроме того, обработка большого количества полученных экспериментальных данных требует использования вычислительной техники. С другой стороны автоматы и роботы, компьютеры и станки требуют научных знаний как для своего проектирования и конструирования, так и для функционирования.
Становится все очевидней, что динамичное развитие техники, удовлетворяющее скорости развития общества, невозможно без научной базы, поскольку техника является материальным воплощением человеческих знаний, что естественным образом показывает ее связь с наукой.
Однако между техникой как средством человеческой деятельности и наукой как рациональной формой человеческих знаний возникли непростые взаимоотношения, имеющие диалектически противоречивый и исторический характер. В своем историческом развитии эти отношения претерпевали различные изменения. На протяжении большей части своей истории наука и техника развивались в отрыве друг от друга, то есть научных знаний не хватало для применения их в изготовлении технических средств. С другой стороны долгое время и технические средства не требовались для развития научной мысли (достаточно было повседневных наблюдений). Но все менялось с развитием науки и усложнением техники.
Абсолютно естественно, что в процессе эволюционирования отношений складывались различные точки рения на соотношение науки и техники. Ниже будут приведены пять наиболее ярких тенденции в оценке процесса сциентификации техники. Некоторые из них к началу XXI века уже были отброшены большинством ученых, однако все точки зрения по-прежнему представляют особый интерес для широко взгляда на историческую панораму этих непростых взаимоотношений.
Систематизация приведена по В.Г.Горохову3 и отражает хронологическую последовательность изменений взгляда ученых на роль науки в развитии техники:
техника это всего лишь прикладная наука;
процессы развития науки и техники автономны, но скоординированы;
технический прогресс ориентирован на эмпирические познания;
эволюционная модель соотношения науки и техники;
развитие науки тесно связано с разработкой технических устройств и инструментов;
техника науки опережает в своем развитии технику повседневной жизни;
до XIX столетия не существовало никакого регулярного применения научных знаний в технической практике, которое можно наблюдать сегодня в технических науках.
Теперь подробнее остановимся на каждой из них.
Долгое время (и особенно в 5060-е гг. нашего столетия) одной из наиболее распространённых моделей отношений науки и техники была так называемая линейная модель, рассматривающая технику в качестве простого приложения науки или даже как прикладную науку. Однако эта точка зрения в последние годы подверглась серьёзной критике как слишком упрощённая. Такая модель взаимоотношения науки и техники, когда за наукой признается функция производства знания, а за техникой лишь его применение, вводит в заблуждение, так как утверждает, что наука и техника представляют различные функции, выполняемые одним и тем же сообществом.
Например, О. Майер считает, что невозможно четко определить границу между наукой и техникой. Так в телевизорах предыдущего поколения использовались катодными трубками деталь чисто научной аппаратуры, изобретенной в стенах научной лаборатории для измерения массы электрона. В свою же очередь новая техника эксперимента позволила разработать полярографический метод определения состава вещества вместо применявшихся значительно более длительных методов физико-химического анализа. Техника дала астрономии новые методы фотографирования, радиолокации, изучения световых волн, а производство рентгеновских аппаратов основанных на той же технологии позволило сделать ряд важных фундаментальных открытий в физике, химии, биологии, медицине. В термодинамике, аэродинамике, физике полупроводников, медицине невозможно отделить практику от теории, они сплетены здесь в единый предмет. Многие учёные сделали вклад в технику, а многие инженеры стали признанными и знаменитыми авторитетами в науке. Например, Леонардо да Винчи положил принцип полета птицы в основу модели летательного аппарата орнитоптера, а величайший инженер Герон Александрийский установил «золотое правило механики» и разработал справочник по прикладной математике. Научные и технические цели, по мнению Майера, часто преследуются одновременно (или в различное время) одними и теми же людьми или институтами, которые используют одни и те же методы и средства. Этот автор полагает, «что практически применимого критерия для различения науки и техники попросту не существует»4. Это действительно серьёзный вопрос, ведь «Орудия не что иное, как материализованные термины, и потому между законами мышления и техническими достижениями могут быть усматриваемы постоянные параллели»5. Это аргументированное мнение требует более глубоко анализа. В чем же собственно тогда разница между понятиями науки и техники, между технической деятельностью и научной?
Существует мнение, что главное различие между наукой и техникой лишь в широте кругозора и в степени общности проблем: технические проблемы более узки и более специфичны. Однако в действительности наука и техника составляют различные сообщества, каждое из которых различно осознает свои цели и систему ценностей.
Такая упрощённая линейная модель технологии как прикладной науки, то есть. модель, постулирующая линейную, последовательную траекторию от научного знания к техническому открытию и инновации большинством специалистов признана сегодня неадекватной.
Такая упрощённая линейная модель технологии как прикладной науки, то есть. модель, постулирующая линейную, последовательную траекторию от научного знания к техническому открытию и инновации большинством специалистов признана сегодня неадекватной.
Вторая принципиальная концепция заключается в том, что процессы развития науки и техники автономны, но скоординированы. Тогда вопрос их соотношения можно рассматривать с двух точек:
наука использует технику инструментально на некоторых стадиях своего развития для получения собственных результатов и наоборот
как эволюционную модель, в которой техника задает условия для выбора научных вариантов, а наука технических.
Приверженцем первой точки зрения является американский историк техники М. Кранцберг. В своей работе «Разобщенность науки и техники»6 он говорит о несостоятельности линейной модели. По его мнению, технический прогресс руководствуется, прежде всего эмпирическим знанием, полученным в процессе имманентного развития самой техники, а не теоретическим знанием, привнесенным в нее извне научным исследованием.
Беме, Ван Ден Дале и Крон приводят трехфазную модель соотношения науки и техники:
«Первая фаза фаза научной революции когда ни наука ни техника не институализировались как отдельные социальные системы.
Вторая фаза фаза когда наука институализировалась что привело к дифференциации науки и техники.
Третья фаза, в которой наука достигает такого развития, что может быть ориентировала на практические цели и генерирует новые технологии»7.
Однако П. Вайнгарт критикует эту упрошенную модель за то, что она базируется на единичных примерах и имеет методологические дефекты8. К его критике можно добавить, что анализ положения фундаментальной науки показывает, что ее ориентация на «чистое» знание не претерпела изменений. «Интеллектуально за чистой, фундаментальной наукой сохраняется привилегия производства нового знания, которая основывается на допущении или, скорее, определении, что только открытие универсальных законов природы является показателем прогресса в познании»9.
Конечно, ошибочно считать технику лишь прикладной наукой, но не менее ошибочно полагать, что наука играет незначительную роль в техническом прогрессе. Все чаще в нашей жизни именно методы научного исследования становятся технологическими приемами. Это делает науку не только родоначальником новой техники, но и новых технологий производства, а следовательно повышает ее роль в жизнедеятельности людей. Так примером того, как самые отвлеченные научные труды превращаются в основу для новых отраслей промышленности, представляют работы А. Эйнштейна. Вряд ли кто-нибудь из его современников мог даже предположить, что открытое им соотношение между массой и энергией станет началом огромной отрасли промышленности, производящей атомную энергию в мирных и военных целях.
Этой же позиции придерживается американский философ техники
Г. Сколимовски10. Он считает, что целью науки является преумножение человеческих знаний с помощью новых теорий, в то время как целью техники является создание новых артефактов при помощи изобретения средств повышения эффективности. Таким образом, он указывает на то, что цели и средства их достижения в науке и технике различны. Но такое разграничение лишает технический прогресс функции получения знаний, что не соответствует его предназначению. Мы видим пример того, что в настоящее время практически невозможно определить грань между научным и техническим процессом, поэтому стоит говорить о едином научно-техническом прогрессе.
В эволюционной модели соотношения науки и техники выделяются три взаимосвязанные, но самостоятельные сферы: наука, техника и производство (или более широко практическое использование). Внутренний инновационный процесс происходит в каждой из этих сфер по эволюционной схеме. Для С. Тулмина, например, очевидно, что выработанная им дисциплинарная модель эволюции науки применима также и для описания исторического развития техники. Только в данном случае речь идёт уже не о факторах изменения популяции теорий или понятий, а об эволюции инструкций, проектов, практических методов, приёмов изготовления и т. д. Новая идея в технике часто ведёт, как и в науке, к появлению совершенно новой технической дисциплины. Техника развивается за счёт отбора нововведений из запаса возможных технических вариантов. Однако, если критерии отбора успешных вариантов в науке являются главным образом внутренними профессиональными критериями, в технике они зачастую будут внешними, т. е. для оценки новаций в технике важны не только собственно технические критерии (например, эффективность или простота изготовления), но и оригинальность, конструктивность и отсутствие негативных последствий. Кроме того, профессиональные ориентации инженеров и техников различны, так сказать, в географическом отношении: в одних странах инженеры более ориентированы на науку, в других на коммерческие цели, в третьих на экологически безопасные. Важную роль скорости нововведений в технической сфере играют социально-экономические факторы.