Криптономикон - Нил Стивенсон 3 стр.


– Ладно, ладно, пусть будут пробки для целых чисел, и для таких, как две целые одна десятая – физические меры, например длина этой палки. – Алан положил палку рядом с пробками.

– Как насчет пи? Нельзя отпилить палку длиной ровно пи дюймов.

– Пи – из геометрии. Та же история, – вставил Руди.

– Да, считалось, что Евклидова геометрия на самом деле своего рода физика, что его прямые и все такое описывают свойства физического мира. Но… знаешь Эйнштейна?

– Я не очень запоминаю фамилии.

– Седой, с большими усами.

– А, да, – мрачно ответил Лоуренс. – Я подходил к нему с вопросом про шестеренки. Он сказал, что опаздывает на встречу.

– Он придумал общую теорию относительности – своего рода практическое приложение, но не Евклидовой, а Римановой геометрии…

– Тот же Риман, что твоя дзета-функция?

– Тот же Риман, другое направление. Не уводи нас в сторону, Лоуренс…

– Риман показал, что существует много-много геометрий, которые, не являясь Евклидовыми, в то же время внутренне непротиворечивы, – объяснил Руди.

– Ладно, давайте снова к «ОМ», – сказал Лоуренс.

– Да! Рассел и Уайтхед. Итак, когда математики начали играть со всякими корнями из минус единицы и кватернионами, это было уже не то, что можно перевести в палки и пробки. И все же они по-прежнему получали верные результаты.

– По крайней мере, внутренне непротиворечивые, – уточнил Руди.

– О’кей. Значит, математика – больше, чем физика пробок.

– Так нам представляется, Лоуренс, но возникает вопрос: математика по правде или это только игра в символы? Другими словами: мы открываем Истину или просто балуемся?

– Она должна быть по правде, потому что, когда прикладываешь ее к физике, она работает! Я слышал про общую теорию относительности и знаю, что она подтверждена экспериментами.

– Большая часть математики не поддается экспериментальной проверке, – сказал Руди.

– Вся идея в том, чтобы укрепить связь с физикой, – произнес Алан.

– И при этом не баловаться.

– И для этого написаны «ОМ»?

– Рассел и Уайтхед свели все математические понятия к таким жутко простым вещам, как множества. Отсюда они перешли к целым числам и так далее.

– Но как можно свести к множествам, например, число пи?

– Нельзя, – сказал Алан, – зато его можно выразить цепочкой цифр: три запятая один четыре один пять девять и так далее.

– То есть через целые числа, – сказал Руди.

– Нечестно! Само пи – не целое!

– Но можно вычислить цифры пи, одну за другой, по некой формуле. И можно написать формулу вроде такой!

Алан нацарапал на земле:



– Я использовал ряд Лейбница, чтобы утешить нашего друга. Видишь, Лоуренс? Это цепочка символов.

– Цепочку символов вижу, – нехотя согласился Лоуренс.

– Можно идти дальше? Гёдель, всего несколько лет назад, сказал: «Послушайте! Вы согласны, что все в математике просто цепочка символов? Тогда вот!» И показал, что любую цепочку символов – вроде этой – можно превратить в целые числа.

– Как?

– Ничего сложного, Лоуренс, простой шифр. Произвольный. Вместо уродливой сигмы напиши число пятьсот тридцать восемь и так далее.

– Очень близко к баловству.

– Нет, нет! Потому что Гёдель расставил ловушку. В формулу можно подставлять числа, да?

– Конечно. Как два икс.

– Да. Можно подставить на место икс любое число, и формула его удвоит. Но если математическую формулу вроде этой для вычисления числа пи можно закодировать числом, то ее можно подставить в другую формулу. Формулу в формулу!

– И это все?

– Нет. Потом он доказал, очень простым способом, что если формулы применимы к формулам, то можно написать некое выражение и сказать: «данное утверждение недоказуемо». Что страшно удивило Гильберта и других, ожидавших противоположного результата.

– Этого твоего Гильберта ты уже упоминал?

– Нет, Лоуренс, он появился в нашем разговоре только сейчас.

– Кто он?

– Человек, который задает трудные вопросы. У него их целый список. Гёдель ответил на один.

– А фон Тьюринг – на другой, – добавил Руди.

– Это еще кто?

– Это я, – сказал Алан. – Только Руди шутит. В Тьюринге, вообще-то, нет приставки «фон».

– Сегодня ночью будет. – Руди как-то странно взглянул на Алана. Будь Лоуренс повзрослее, он бы определил этот взгляд как «страстный».

– Ладно, не томи. На какой вопрос Гильберта ты ответил?

– Entscheidungsproblem[6], – сказал Руди.

– То есть?

Алан объяснил:

– Гильберт хотел знать, можно ли в принципе доказать истинность или ложность любого высказывания.

– Но Гёдель все изменил, – произнес Руди.

– Верно. После Гёделя вопрос стал звучать так: «Можно ли определить, доказуемо или нет некое – любое – конкретное высказывание?» Другими словами, есть ли механический процесс, посредством которого мы в состоянии отсеять доказуемые утверждения от недоказуемых?

– «Механический процесс», Алан, это вообще-то метафора…

– Ладно тебе, Руди. Мы с Лоуренсом не боимся механики.

– Усек, – сказал Лоуренс.

– Что значит «усек»? – спросил Алан.

– Твоя машина – не для дзета-функций, а другая, о которой мы говорили…

– Она называется Универсальная Машина Тьюринга, – сказал Руди.

– Вся эта хреновина нужна, чтобы отделять недоказуемые утверждения от доказуемых, верно?

– Вот для чего я придумал ее основную идею, – сказал Алан. – Так что на вопрос Гильберта ответ уже есть. Теперь я хочу на самом деле ее построить, чтобы обыграть Руди в шахматы.

– Ты еще не сообщил бедному Лоуренсу ответ, – напомнил Руди.

– Лоуренс сообразит, – сказал Алан. – Ему будет чем себя развлечь.

__________________

Скоро стало ясно, что Алан на самом деле хотел сказать: «Будет чем себя развлечь, пока мы займемся друг другом». Лоуренс засунул блокнот под брючный ремень, взял велосипед, отъехал ярдов на двести к пожарной вышке, поднялся по лестнице на платформу и сел спиной к заходящему солнцу, примостив на коленях блокнот, чтобы свет падал на страницу.

Сперва он не мог собраться с мыслями, потом его отвлекли сполохи на северо-востоке. Он подумал было, что это отблески заката на облаках, но свет шел явно из одного места и к тому же мерцал. Тогда Лоуренс предположил, что это молния, однако свет был недостаточно голубой и резко менялся под воздействием (надо полагать) каких-то могучих событий за горизонтом. Когда солнце скрылось за противоположным краем мира, свет на горизонте Нью-Джерси превратился в ровное сияние, того же цвета, что от фонарика, когда под одеялом смотришь на него через пальцы.

Лоуренс спустился с башни, сел на велосипед и покатил через Сосновую пустошь. Вскоре он выехал на дорогу, которая шла примерно в нужную сторону. Большую часть времени он вообще ничего не видел, даже дорогу, но часа через два отблески света легли на щебенку под колесами, и ручейки между сосен превратились в горящие трещины.

Дорога свернула не в ту сторону, и Лоуренс поехал напрямик через лес. Теперь было совсем близко, и он различал свет за редким сосняком – черные тощие стволы казались обгорелыми палками. Начался песок, сырой и плотный, а у велосипеда были толстые шины. Один раз пришлось остановиться и перебросить велосипед через колючую проволоку. За сосняком пошел совершенно ровный белый песок с кустиками аммофилы, и тут же Лоуренса ослепила низкая ровная стена огня на горизонте размером примерно с полную луну, когда та садится в море. Огонь был такой яркий, что ничего другого Лоуренс уже не видел и несколько раз въезжал в промоины. После этого он старался не смотреть прямо на огонь, тем более что глядеть по сторонам тоже было интересно. На плоской песчаной равнине высились циклопические постройки, грубые творения фараонов, а на обширных пространствах между ними – далеко разнесенные исполинские гномоны триангулированной стали, внутренние скелеты пирамид. Циферблат самых высоких солнечных часов очерчивали круговые рельсы диаметром несколько сот футов: две серебряные дуги бежали по блеклой земле, разрываясь там, где указывала время черная тень башни. Лоуренс проезжал здания поменьше; рядом с ними стояли овальные цистерны. Из клапанов наверху цистерн с шипением выходил пар, но не поднимался в небо, а стекал по стенкам и расползался по земле, кутая солончаковую траву в серебряные бушлаты. Тысяча матросов в белом стояли оцеплением вокруг длинного пламени. Один из них поднял руку и помахал Лоуренсу – остановись, мол. Лоуренс притормозил и уперся ногой в песок. Они с матросом некоторое время друг друга разглядывали, потом Лоуренс, не придумав ничего лучшего, сказал: «Я тоже из ВМФ». Матрос, видимо, принял какое-то решение. Он отсалютовал Лоуренсу и указал на маленькое строение сбоку от пламени.

На фоне зарева строение казалось глухой стеной, однако порой голубая вспышка магнезии выхватывала из темноты его окна, прямоугольные молнии, многократно отраженные в ночи. Лоуренс снова принялся крутить педали и поехал мимо строения, огибая толпу фетровых шляп, тычущих в блокноты солидными авторучками, фотографов с их огромными хромированными аппаратами, ряды спящих, укрытых с головой простынями, потного человека с набриолиненными волосами, который мелом писал на черной доске немецкие фамилии. Наконец он объехал здание и почуял горячий запах масла, почувствовал жар на лице и увидел иссушенную, скорченную траву.

Ему предстал земной шар – не в живой коже континентов и океанов, а только голый скелет: взорванные меридианы стягивались к ядру оранжевого пламени. На фоне огня они казались тонкими и четкими, как чертеж, однако когда Лоуренс подъехал ближе, начала прорисовываться умная система шпангоутов и стрингеров, полая, как птичья кость. По мере удаления от полюсов они рано или поздно начинали отклоняться от курса, или гнулись, или просто ломались и висели в огне, дрожа, как сухие стебли. Идеальную геометрию нарушали также паутина тросов, сплетение электрических проводов. Лоуренс едва не наехал на разбитую бутылку и решил дальше идти пешком, чтобы поберечь шины. Он положил велосипед передним колесом на алюминиевую вазу, словно выточенную на токарном станке, – из нее свешивалось несколько обугленных роз. Трое матросов сцепили руки наподобие трона и несли человекоподобный кусок угля в чистейшем асбестовом одеянии. Их ботинки задевали разветвленную сеть канатов, тросов и проволоки, вызывая движение травы и песка в десятках ярдов впереди, справа, сбоку. Лоуренс начал очень осторожно переставлять ноги – сначала одну, потом другую, – стараясь проникнуться величием того, что видит. Из песка торчало нечто вроде ракеты, увенчанное зонтиком гнутых пропеллеров. Дюралевые стойки и трапы разлетелись на мили. На земле валялся раскрытый чемодан, и в нем, как в витрине провинциальной лавки, пара дамских туфель; рядом меню, обугленное в овал, дальше – покореженные стенные панели, как будто с неба рухнула целая комната. На одной стене была огромная карта мира, где от Берлина разбегались круги к далеким и близким городам, на другой, фотографической, знаменитый толстый немец улыбался среди цветов на фоне новехонького цеппелина.

Через некоторое время Лоуренс перестал видеть что-нибудь новое, сел на велосипед и поехал к Сосновой пустоши, но заблудился в темноте и добрался до пожарной вышки уже после рассвета. Впрочем, он ничуть не горевал, что сбился с дороги, потому что думал про машину Тьюринга. В конце концов он все-таки добрался до озера, где стояла палатка. Спокойная гладь алела в лучах рассвета, как лужа крови. Алан Матисон Тьюринг и Рудольф фон Хакльгебер спали на берегу, сложившись, как ложки, еще немного грязные после ночного купания. Пока Лоуренс разводил костерок и готовил чай, они проснулись.

– Решил задачку? – спросил Алан.

– Ты можешь превратить свою Универсальную Машину Тьюринга в любую машину, меняя регистровки.

– Что меняя?

– Прости, Алан. Я думаю о твоей УМТ как о своего рода органе.

– А.

– После этого машина может выполнять любые вычисления, какие тебе угодно, лишь бы лента была достаточно длинной. Но, черт возьми, Алан, сделать такую длинную ленту, на которой можно было бы писать и стирать, – жуткая морока. Машина Атанасова работала только до определенного размера, и тебе придется…

– Речь о другом, – мягко сказал Алан.

– Ладно, хорошо. Если у тебя есть такая машина, то каждую конкретную комбинацию регистров можно обозначить числом – цепочкой символов. А лента, которую ты в нее запускаешь, чтобы начать вычисление, – другая цепочка символов. Так что это снова Гёделево доказательство: если любую возможную комбинацию регистров и данных на ленте можно представить в виде цепочки чисел, значит, ты можешь поместить все возможные цепочки в большую таблицу, применить к ней Канторов диагональный процесс, и ответ: да, должны быть некоторые числа, которые нельзя пересчитать.

– А Entscheidungsproblem? – напомнил Руди.

– Доказать или опровергнуть формулу – после того как ты зашифровал ее числом – значит просто рассчитать это число. Значит, ответ – нет! Некоторые формулы нельзя доказать или опровергнуть механическим процессом! Выходит, не так уж плохо быть человеком!

До этих слов Алан казался довольным, потом его лицо вытянулось.

– Ну вот, теперь ты делаешь непрошеные допущения.

– Не слушай его, Лоуренс! – сказал Руди. – Сейчас он заявит, что наш мозг – машина Тьюринга.

– Спасибо, Руди, – спокойно ответил Алан. – Лоуренс, я утверждаю, что наш мозг – машина Тьюринга.

– Но ты доказал, что есть целый ряд формул, с которыми машина Тьюринга не справляется!

– И ты это доказал, Лоуренс.

– А тебе не кажется, что мы можем то, чего не может машина Тьюринга?

– Гёдель с тобой согласен, Лоуренс, – вставил Руди, – и Харди тоже.

– Приведите пример, – попросил Алан.

– Невычислимой функции, с которой человек справится, а машина Тьюринга – нет?

– Да. Только не надо сентиментальной чепухи про творчество. Уверен, Универсальная Машина Тьюринга способна демонстрировать поведение, которое мы воспримем как творческое.

– Ну, не знаю… Буду думать.

Позже, когда они ехали к Принстону, Лоуренс спросил:

– Как насчет снов?

– Вроде твоих ангелов в церкви?

– Примерно.

– Просто шум в нейронах, Лоуренс.

– А еще мне вчера ночью приснилось, что горел цеппелин[7].

Вскоре Алан защитился и уехал в Англию, откуда прислал Лоуренсу пару писем. В последнем он сообщал просто, что больше не сможет писать «о серьезном», и просил не принимать это на свой счет. Лоуренс сразу догадался, что сообщество, к которому принадлежит Алан, приставило его к полезному делу – скорее всего вычислять, как бы их не съели заживо соседи. Интересно, какое применение найдет Америка ему?

Он вернулся в колледж штата Айова, подумывая перевестись на математический факультет, однако делать этого не стал. Все, с кем он советовался, говорили, что математика, как и ремонт орга`нов, – дело замечательное, но надо подумать и о хлебе насущном. Лоуренс остался на инженерном и учился все хуже и хуже, пока в середине последнего курса деканат не порекомендовал ему заняться чем-нибудь полезным, скажем, ремонтом крыш. Лоуренс вылетел из колледжа в гостеприимные объятия ВМФ.

Ему дали тест на проверку умственных способностей. Первая задача по математике была такой: порт Смит на 100 миль выше по течению, чем порт Джонс. Скорость течения – 5 миль в час. Скорость лодки – 10 миль в час. За какое время лодка доберется из порта Смит в порт Джонс? За какое время она проделает обратный путь?

Лоуренс тут же понял, что задачка с подвохом. Нужно быть полным идиотом, чтобы предположить, будто течение увеличивает и уменьшает скорость лодки на 5 миль в час. Ясно, что 5 миль в час – всего лишь средняя скорость. Течение быстрее в середине реки, медленнее – у берегов; более сложные вариации следует ожидать на излучинах реки. По сути, это вопрос гидродинамики, который решается с помощью хорошо известных дифференциальных уравнений. Лоуренс нырнул в задачку и быстро (или так ему казалось) исписал вычислениями десять листов. По ходу он осознал, что одна его посылка вместе с упрощенным уравнением Навье-Стокса приводит к очень занятной семейке частных дифференциальных уравнений. Он не успел очухаться, как доказал теорему. Если это не подтверждает его умственный уровень, то что тогда подтверждает?

Тут прозвенел звонок и собрали работы. Лоуренс сумел спасти черновик. Он отнес листок в казарму, перепечатал на машинке и отправил в Принстон одному из наиболее демократичных преподавателей математики, который тут же договорился о публикации в парижском журнале.

Назад Дальше