Физики мыслят в категориях абсолютного времени: для них существенно, когда именно произошло некое событие, а главная проблема, которую они при этом решают – это проблема часов (ведь распадающийся уран – это, по сути дела, песочные часы хитрой конструкции). Однако совершенно очевидно, что время существует вне зависимости от того, есть ли у нас приборы для его измерения. Во множестве случаев для нас существенна лишь очередность событий («это произошло после…, но до…»), тогда как строгие их датировки куда менее важны; рассказывая о неком происшествии, часто говорят не «в 15 часов», а «после обеда»; не «20 марта», а «как только сошел снег»; не «в 1939 году», а «перед войной» – и в этом есть достаточно глубокий смысл. Любая последовательность событий уже сама по себе является временем – относительным временем. Так вот, геологи всегда работали в мире этого самого относительного времени. Точность, с которой мы можем определить положение некого события на шкале относительного времени, прямо зависит от ее дробности (т. е. числа составляющих шкалу событий) и полноты (события должны распределяться по шкале более или менее равномерно, не оставляя «пустот»). Поэтому геологи видели свою задачу не в поиске «часов», а в том, чтобы совершенствовать в указанных направлениях шкалу относительного времени – палеонтологическую летопись (это не метафора, а термин).
Есть два фундаментальных принципа (фактически это аксиомы), которыми пользуются геологи при изучении истории. Первый – принцип Стено, или закон напластования: если один слой (пласт) горных пород лежит на другом, то верхний слой образовался позднее, чем нижний. Второй – принцип Гексли, или закон фаунистических и флористических ассоциаций: слои, содержащие ископаемые остатки одних и тех же видов животных и растений, образовались в одно и то же время. Первый принцип позволяет установить хронологический порядок образования горных пород в одном месте, второй – синхронизировать между собой пласты, залегающие в разных местах (рис. 1, а).
а)
б)
Рис. 1. Составление сводной стратиграфической шкалы на пяти(1–5) разрезах – а; образование запрокинутого залегания (линия, складка и эрозия «нормальной» половинки) – б (по Фентон, 1997)
Принципы эти, казалось бы, предельно просты, однако при их практическом применении нас подстерегает целый ряд ловушек. Так, исходная последовательность слоев в результате тектонических движений зачастую сминается в более или менее горизонтальные складки. Если в дальнейшем вышележащая половинка складки (с «правильной» последовательностью) окажется полностью уничтоженной эрозией, то установить, что в нашем распоряжении осталось лишь искаженное, запрокинутое залегание слоев, будет весьма непросто (рис. 1, б). Еще бо́льшие проблемы возникают с законом фаунистических ассоциаций. Синхронные, но пространственно удаленные фауны всегда будут отличаться друг от друга; в частности, они будут иметь в своем составе разную долю реликтов, унаследованных от предшествующих эпох. Представьте-ка себе, что вам предложено «вслепую» сопоставить выборки из современных фаун млекопитающих Европы и Австралии (со всеми ее сумчатыми и однопроходными). Много ли у вас будет оснований для заключения об их синхронности? Сведение множества региональных последовательностей фаун и флор в единую глобальную шкалу – одна из основных задач специального раздела геологии, стратиграфии (от латинского strātum – слой).
Трудности, возникающие на этом пути, велики, но вполне преодолимы. Последовательное применение принципов Стено и Гексли (плюс накопление огромного эмпирического материала) позволило геологам уже в самом начале XIX века разделить все отложения на первичные, вторичные, третичные и четвертичные; это деление полностью соответствует современному делению осадочных толщ на палеозойские, мезозойские и кайнозойские (объединяющие два последних подразделения). А к 30-м годам XIX века в составе этих отложений были выделены и почти все принятые ныне системы (юрская, меловая, каменноугольная и пр.); последняя из них – пермская – была выделена Р. Мурчисоном в 1841 году.
Так была создана всеобъемлющая шкала относительного времени – геохронологическая шкала, к которой может быть однозначно «привязана» любая содержащая ископаемые осадочная порода. Шкала эта оказалась столь совершенной, что XX век не внес в нее сколь-нибудь существенных корректив, за исключением чисто формального изменения ранга некоторых ее подразделений (в 50-е годы единый третичный период был разделен на два – палеогеновый и неогеновый, а ордовик, считавшийся частью силура, получил ранг самостоятельного периода),[4] и лишь снабдил ее подразделения абсолютными датировками. Основная проблема, которую с той поры пришлось решать геологам, – это создание такой же шкалы для наиболее древних пород, которые считались «немыми», т. е. лишенными сколь-нибудь сложных (и, соответственно, диагностичных) ископаемых остатков (см. рис. 2, а также таблицы в конце книги).
Самыми крупными подразделениями геохронологической шкалы являются эоны. Хорошо известные вам палеозой, мезозой и кайнозой – это эры, на которые подразделяется последний из эонов – фанерозой (от греческих слов phanerós – видимый, явный и zōḗ – жизнь), начавшийся 0,54 млрд лет назад. Эоны, предшествующие фанерозою, – протерозой (0,54–2,5 млрд лет) и архей (2,5–4,6 млрд лет) – часто объединяют под названием криптозой (от греческого kryptós – скрытый), или докембрий (кембрий – самый первый период фанерозоя). Фундаментальное разделение геохронологической шкалы на фанерозой и докембрий основано на наличии или отсутствии в соответствующих осадочных породах ископаемых остатков организмов, имевших твердый скелет. Первая половина архея, катархей – время, из которого осадочные породы не известны по причине отсутствия тогда гидросферы. Последний отрезок докембрия, венд – время появления бесскелетных многоклеточных животных.
Рис. 2. Геохронологическая шкала. Для того чтобы запомнить последовательность периодов, составляющих фанерозой (кембрий, ордовик, силур, девон, карбон, пермь, триас, юра, мел, палеоген, неоген, антропоген), студенты испокон веков пользуются мнемонической фразой не вполне педагогичного свойства: «Каждый отдельный студент должен купить пол-литра. Ты, Юрик, мал – подожди немного, а то…»
С каждой из единиц, составляющих существующую последовательность осадочных пород, можно однозначно соотнести определенное подразделение временно́й шкалы – и наоборот; так, все отложения, образовавшиеся на Земле на протяжении юрского периода, образуют юрскую систему, или просто юру. Системы объединяются в группы (юра входит в состав мезозоя) и делятся на отделы (нижняя, средняя и верхняя юра), ярусы (верхняя юра – на келловей, оксфорд, кимеридж и титон), а далее на зоны (Cardioceras cordatum). Временны́м эквивалентом группы является эра, отдела – эпоха, яруса – век, зоны – время (рис. 3).
Названия подразделений геохронологической шкалы происходят от названий мест, где были впервые описаны «эталонные» для того или иного времени осадочные породы (пермский период, оксфордский век); исключение составляет низшая единица шкалы, всегда называемая по руководящему ископаемому, характерному для этого момента геологической истории (время Cardioceras cordatum). Например, пермский период следует определить как время, когда на Земле образовывались горные породы такого же типа, что ныне выходят на поверхность в окрестностях уральского города Пермь. Имея дело с геохронологической шкалой, необходимо всегда помнить, что первичен здесь определенный тип геологических тел, а время производно, вторично. (Тот же самый принцип используется и в археологии: мезолит и бронзовый век – исторические периоды, время, когда люди делали орудия и украшения определенного типа.) Именно по этой причине геохронология спокойно обходилась и без датировок ее подразделений в миллионах лет, ставших привычными лишь в последние три-четыре десятилетия. Вообще роль абсолютных датировок (радиоизотопных датировок) очень велика для стратиграфии докембрийских толщ, где отсутствуют достаточно сложные ископаемые; радиоуглеродный метод[5] широко применяется для датировки новейших отложений, возрастом менее 40 тыс. лет. В остальном же эти методы играют в стратиграфии сугубо подчиненную роль, и мы в дальнейшем будем в основном обозначать время в терминах не абсолютной, а относительной шкалы.
Рис. 3. Соответствие стратиграфических и временных подразделений
Однажды академику А. Л. Яншину задали вопрос: в чем состоит разница между абсолютной и относительной геохронологиями? Тот, согласно преданию, ответил: «Главная разница в том, что относительная геохронология точна, а абсолютная – нет». Радиоизотопные методы дают нам датировку с точностью до 1–2 %, которая, на первый взгляд, кажется вполне приемлемой. Но на отрезках времени в сотни миллионов лет (которыми оперирует геология) эта погрешность измерения тоже будет исчисляться миллионами лет. Пусть мы определили абсолютный возраст некой осадочной толщи как 154 ±2 млн лет; в течение этих двух миллионов лет могли накопиться многие сотни метров (или даже километры) осадков. Палеонтологи же способны распознать в этой толще однообразных пород слой толщиной всего в несколько метров, руководствуясь известным им «адресом»: верхняя юра, оксфордский ярус, зона Cardioceras cordatum (ибо только в это «мгновение» геологической истории жил на Земле головоногий моллюск Cardioceras cordatum). Определить столь ничтожный отрезок времени методами абсолютных датировок нельзя ни в каком приближении.
Здесь опять напрашивается сравнение с археологией. Предположим, мы обнаружили древнеегипетский саркофаг. Можно отколупнуть от него щепку и установить, что дерево, из которого он был изготовлен, срублено 4 500 ±300 лет назад. Археолог же поглядит на орнамент саркофага и без колебаний скажет: «Среднее царство, XIII династия… конец, но не самый». Ну и какая из датировок, на ваш взгляд, более содержательна?
Дополнение к главе 1
Несколько слов о методологии науки. Принцип актуализма, «бритва Оккама» и презумпции. Проверка теории: верификации и фальсификации
Принцип актуализма (этот термин был введен в 1830 году Ч. Лайелем): при любых реконструкциях событий прошлого мы исходим из того, что в те времена должны были действовать такие же законы природы, что и ныне. «Настоящее есть ключ к прошлому» – так формулировал принцип сам Лайель. Пусть, к примеру, в докембрии существовали экосистемы, которым нет сегодня аналогов, но камень-то, надо думать, и тогда падал на землю с ускорением 9,8 м/с
2
кванты светаНепосредственно в прошлое заглянуть невозможно, машина времени – это несбыточная мечта человечества. Любые наши суждения о прошлом есть лишь более или менее вероятные предположения, основанные на интерпретации фактов и событий современности. Динозавры (столь полюбившиеся широкой публике после «Парка юрского периода») – это, вообще-то говоря, лишь куски песчаника, напоминающие своей формой кости современных рептилий; все остальное – чистые домыслы. Понятно, что цена домыслам режиссера С. Спилберга и академика от палеонтологии Л. П. Татаринова несколько разная, однако экспериментально проверить нельзя ни первые, ни вторые – ни сегодня, ни в будущем. Поэтому вначале нам следует решить для себя принципиальный вопрос: познаваемо ли прошлое вообще? При этом необходимо признать, что на логическом уровне проблема неразрешима, т. е. это вопрос не разума, а веры.
Если ответ будет «нет», то мы можем дальше по собственному усмотрению населять прошлое атлантами и лемурийцами, разумными спрутами и крылатыми огнедышащими драконами, а можем, наоборот, отрицать существование всего, что не упомянуто – черным по белому – в Ветхом Завете. Пожалуйста. Мы теперь находимся в сфере мифологии, можно ни в чем себе не отказывать. Отправившись по этому пути, мы с неизбежностью должны прийти к отрицанию существования Хеопса, Ивана Грозного, а то и товарища Сталина – чем они в этом смысле лучше динозавров?
Если же мы примем, что прошлое принципиально познаваемо (а подавляющее большинство людей решают для себя этот вопрос именно так), и останемся при этом на позициях рационального мышления (т. е. будем полагаться не на «откровения свыше», а на свои собственные наблюдения и умозаключения), то упомянутый выше кусок песчаника немедленно превратится в бедренную кость тиранозавра. Структура ее поверхности позволит нам сделать выводы о местах прикрепления мышц и, соответственно, о типе походки, скорости передвижения и возможных способах охоты; внутренняя структура кости – о характере кровоснабжения и, соответственно, о возможной теплокровности этих существ. Ископаемая древесина с годичными кольцами позволит заключить, что климат в этом месте тогда был сезонным, а ископаемый коралловый риф – что температура окружающей его морской воды превышала 20 °C. Все эти выводы будут основаны на аналогиях – на том, как ведут себя кости позвоночных, древесина и коралловые рифы в наши дни. Но вправе ли мы исходить из такой предпосылки? Не только вправе – мы обязаны поступать именно так, и вот почему.
Мы уже оговорили, что действуем в сфере рационального мышления. Рациональный тип мышления – отнюдь не единственно возможный; бывает мышление художественное, мистическое, религиозное и т. п. Надо отчетливо осознавать, что ни одно из них не «хуже» и не «лучше» остальных – они просто разные и имеют свои собственные «своды законов». Мы вольны в выборе типа мышления – но, раз выбрав, обязаны будем в дальнейшем подчиняться определенным правилам.
Одним из фундаментальных принципов рационального мышления является «бритва Оккама» – по имени средневекового английского философа У. Оккама, который формулировал его так: «Не умножай сущностей сверх необходимого». Применительно к правилам научного исследования это означает следующее: выбирая одну из нескольких гипотез, объясняющих некое явление, надо начинать с самой простой из них, и только убедившись в том, что она «не работает», переходить к более сложной, повторяя эту процедуру до тех пор, пока не будет найдено простейшее удовлетворительное объяснение.
Приведем такой пример. На тихоокеанском острове Пасхи имеются циклопические статуи, которые, казалось бы, не могли быть воздвигнуты примитивным племенем, населяющим остров в наши дни. Можем ли мы высказать гипотезу, что статуи эти поставлены пришельцами с другой планеты? Конечно, можем. Однако, находясь в рамках рационального подхода, мы вправе принять подобное объяснение лишь после того, как будут исчерпаны все более простые – «земные» – гипотезы. Тур Хейердал, сделавший успешную попытку установить пасхианскую статую с помощью лишь тех средств, что есть в наши дни в распоряжении тамошних аборигенов, действовал строго в рамках «бритвы Оккама», хотя наверняка не задумывался над этим. Последнее весьма существенно: дело в том, что принцип «бритвы Оккама» и впоследствии развившийся из него принцип парсимонии для любого ученого (по крайней мере, в сфере естественных наук) настолько фундаментальны, что обычно их просто не замечают – как мы не замечаем воздуха, которым дышим.
Возвращаясь к методам реконструкции картин далекого прошлого, отметим, что с этой точки зрения актуализм (стремление в исторических реконструкциях отталкиваться от современных аналогов) совершенно корректен. Существование же в прошлом принципиально иных, чем ныне действующие, законов природы будет той самой «избыточной сущностью», которую и отсекает «бритва Оккама». Собственно говоря, прошлое вообще познаваемо ровно настолько, насколько точные аналогии былым ситуациям существуют в современности. Однако в следующих главах мы регулярно будем сталкиваться и с такими совокупностями фактов, для объяснения которых нам придется предполагать, что в природе существовали и ситуации, ныне совершенно немыслимые, как-то: экосистемы, не имевшие в своем составе хищников (с. 102); ландшафты, которые были не сушей и не морем, а чем-то средним (с. 86); атмосферная циркуляция, при которой число конвективных ячеек (с. 147) отлично от нынешнего. Не оказываются ли такие реконструкции отступлением от принципа актуализма? Нет, потому что принцип актуализма не является аксиоматичным положением. Аксиома – это принимаемое без доказательств положение, на основе которого строится внутренне непротиворечивая система взглядов. Если мы принимаем за аксиому утверждение, что через точку, лежащую вне прямой, можно провести одну (только одну) прямую, параллельную данной, то получаем внутренне непротиворечивую геометрию Евклида. А если принять, что через такую точку можно провести несколько прямых, не пересекающих данную, то возникнет геометрия Лобачевского, такая же внутренне непротиворечивая, как и «нормальная», евклидова.