Полный справочник невропатолога. - Владислав Владимирович Леонкин 5 стр.


Различная скорость проведения, продолжительность фаз потенциала действия, строение волокон позволяет подразделять их на 3 вида: А, В, С.

Волокна типа А – миелиновые, они, в свою очередь, подразделяются еще на 4 подгруппы: α-, β-, γ– и δ-волокна. Альфа-волокна, или, как их еще называют, А-а, среди этой группы имеют самый большой диаметр (12–22 мкм) и высокую скорость проведения импульса (70-120 м/с). В организме они достаточно распространены. К этой группе относятся двигательные и чувствительные волокна скелетной мускулатуры. Что касается длительности различных фаз потенциала действия, то продолжительность пика составляет 0,4–0,5 мс, следовой деполяризации – 15–20 мс, следовой гиперполяризации – 40–60 мс. Следующие подгруппы типа А – А-β, А-γ, А-δ – отличаются меньшим диаметром и скоростью проведения возбуждения, но их потенциал действия более продолжителен, чем А-α. Эти волокна участвуют в основном в проведении импульсов от различных рецепторов внутренних органов в нервные центры. А-β волокна идут от тактильных рецепторов, А-γ – от тактильных и барорецепторов, а также к мышечным веретенам как двигательные волокна. В А-δ подгруппу входят афферентные волокна, несущие импульс от термо-, барорецепторов и ноцицепторов. Проведение в трех последних подгруппах составляет 1-12 м/с. Самое быстрое проведение – в А-β волокнах. Пик потенциала действия может продолжаться до 0,9–1,0 мс, (наиболее длительное – в А-β волокнах). Следовая деполяризация и гиперполяризация продолжаются примерно в течение того же времени, что и в А-α.

Волокна типа В также покрыты миелиновой оболочкой, имеют достаточно низкую скорость проведения и находятся в составе вегетативных отделов нервной системы. В основном, это преганг-лионарные вегетативные волокна. Проведение осуществляется со скоростью от 3 до 18 м/с. Наряду с этим, в В-волокнах потенциал действия по длительности превосходит более чем в 3 раза это значение в А-волокнах. Важнейшим отличием является тот факт, что в этих волокнах не наблюдается фаза следовой гиперполяризации. Следовая гиперполяризация может продолжаться до 100 мс.

Волокна типа С по строению безмиелиновые, очень тонкие, всего 0,5–2,0 мкм в диаметре. Они также обнаруживаются в вегетативной нервной системе в составе постганглионарных волокон, осуществляя проведение от рецепторов тепла, холода, давления и боли. Эти волокна отличаются наиболее медленной скоростью проведения (не больше 3 м/с). Их потенциал действия отличается самой большой (по сравнению с другими типами) длительностью развития потенциала действия: у теплокровных животных и человека – до 2 мс.

Регенерация

Волокна способны существовать и выполнять свою функцию только тогда, когда они связаны с телом нейрона. Повреждение волокна ведет к нарушению или утрате способности проводить возбуждение. Перерезка ведет к гибели отсеченной части волокна. Однако волокна способны регенерировать за счет гипертрофии (эндорепродукции). Разрушение отделенного волокна и образование нового является сложным и длительным процессом и протекает в несколько последовательных стадий. После перерезки миелиновый слой перерождается в жировые капли. Леммо-циты осуществляют дегенерацию осевого цилиндра с помощью гидролитических ферментов лизосом. В результате на месте волокна остается цепь леммоцитов. Дальше начинается регенерация волокна. От места его отделение в ложе, образованной шваннов-скими клетками, начинает прорастать колба роста. Регенерация осуществляется с примерной скоростью 0,5–4,5 мм за сутки в зависимости от строения волокна и местоположения его в организме.

Рефлекторная дуга

Деятельности нервной системы присущ рефлекторный характер. Еще в XVII в. французский философ и математик Рене Декарт дал описание рефлекторному акту. Он отметил реакцию организма на раздражение и высказал предположение о существовании пути, по которому проходит нервное возбуждение. Сам термин «рефлекс» был выдвинут позже – в XVIII в. – чешским ученым Дж. Прохазкой (с латинского «рефлекс» – отраженное действие). В дальнейшем И. М. Сеченов в своей работе «Рефлексы головного мозга» доказал, что ответы нервной системы на различного рода раздражения протекают по рефлекторному механизму, т. е. все сознательные и бессознательные действия имеют рефлекторное происхождение. Под рефлексом понимается конкретная реакция организма на раздражитель внутренней среды либо поступивший извне с обязательным участием центральной нервной системы. Рефлексы принято называть функциональными единицами нервной деятельности.

Рефлексы поддаются классификации по различным критериям. Так, в зависимости от уровня замыкания дуги, т. е. по месту локализации рефлекторного центра, рефлексы подразделяют на спинальные (рефлекс замыкается в спинном мозге), бульбарные (рефлекторный центр – продолговатый мозг), мезэнцефальные (замыкание рефлекторной дуги осуществляется в среднем мозге), диэнцефальные и кортикальные рефлекторные центры находятся в конечном мозге и коре больших полушарий соответственно. По эффекторному признаку они бывают соматические, когда эфферентный путь рефлекса осуществляет двигательную иннервацию скелетной мускулатуры, и вегетативные, когда эффекторами являются внутренние органы. В зависимости от вида раздражаемых рецепторов рефлексы делят на экстероцептивные (если рецептор воспринимает информацию из внешней среды), проприо-цептивные (рефлекторная дуга начинается от рецепторов костно-мышечно-сухожильного аппарата) и интероцептивные (от рецепторов внутренних органов). Интероцептивные рефлексы, в свою очередь, подразделяются на висцеро-висцеральные (рефлекторная дуга связывает два внутренних органа), висцеро-мышечные (рецепторы находятся на мышечно-сухожильном аппарате, эффектор – внутренний орган) и висцеро-кутанные (рецепторы локализованы в коже, рабочие органы – внутренности). По Павлову, рефлексы делят на условные (выработанные в течение жизни, специфичные для каждого индивида) и безусловные (врожденные, видоспецифичные: пищевые, половые, оборонительно-двигательные, гомеостатические и др.).

Независимо от вида рефлекса его рефлекторная дуга содержит рецептор, афферентный путь, нервный центр, эфферентный путь, рабочий орган и обратную связь. Исключением являются аксон-рефлексы, рефлекторная дуга которого располагается в пределах одного нейрона: чувствительные отростки генерируют центростремительные импульсы, которые, проходя через тело нейрона, по аксону распространяются в центральную нервную систему, а по ответвлению аксона импульсы доходят уже до эффектора. Подобные рефлексы относят к функционированию метасимпатической нервной системы, через них, например, осуществляются механизмы регулирования тонуса сосудов и деятельности желез кожи.

Функцию восприятия раздражения и превращения его в энергию возбуждения выполняют рецепторы рефлекторных дуг. Ре-цепторная энергия возбуждения носит характер локального ответа, что имеет значение в градации возбуждения по силе.

Исходя из строения и происхождения рецепторов, их можно разделить на первично-чувствующие, вторично-чувствующие и свободные нервные окончания. У первых в качестве рецептора действует сам нейрон (развивается из нейроэпителия), т. е. между раздражителем и первым афферентным нейроном нет структур-посредников. Локальный ответ первично-чувствующих рецепторов – рецепторный потенциал – является и генераторным потенциалом, т. е. вызывающим возникновение потенциала действия на мембране афферентного волокна. К первично-чувствующим рецепторам относят зрительные, обонятельные, хемо– и ба-рорецепторы сердечно-сосудистой системы.

Вторично-чувствующие клетки представляют собой специальные структуры ненервного происхождения, которые с помощью синаптических нейрорецепторных контактов взаимодействуют с дендритами псевдоуниполярных чувствительных клеток. Рецеп-торный потенциал, возникающий под действием раздражителя, во вторично-чувствующих клетках не является генераторным и не вызывает возникновения потенциала действия на мембране афферентного волокна. Возбуждающий постсинаптический потенциал возникает лишь через механизм выделения рецептор-ной клеткой медиатора. Градация силы раздражителя осуществляется посредством экскреции различных количеств медиатора (чем больше выделяется медиатора, тем сильнее раздражитель).

Ко вторично-чувствующим клеткам относят слуховые, вестибулярные, каротидные, тактильные и другие рецепторы. Иногда в связи с особенностями функционирования к этой группе относят фоторецепторы, которые с анатомической точки зрения и в связи с происхождением из нейроэпителия являются вторично-чувствующими.

Свободные нервные окончания представляют собой ветвления дендритов псевдоуниполярных чувствительных клеток и локализуются почти во всех тканях человеческого тела.

По энергетической природе раздражителя, на который реагирует рецептор, они делятся на механорецепторы (тактильные, барорецепторы, волюморецепторы, слуховые, вестибулярные; они, как правило, воспринимают механическое раздражение при помощи выростов клетки), хеморецепторы (обонятельные), хемо-рецепторы сосудов, центральной нервной системы, фоторецепторы (воспринимают раздражение через палочко– и колбочковид-ные выросты клетки), терморецепторы (реагируют на изменение «тепло-холод» – тельца Руфини и колбы Краузе слизистых оболочек) и ноцицепторы (неинкапсулированные болевые окончания).

Пострецепторным образованием рефлекторных дуг является афферентный путь, образованный псевдоуниполярным чувствительным нейроном, тело которого лежит в спинальном ганглии, а аксоны образуют задние корешки спинного мозга. Функция афферентного пути – проведение информации к центральному звену, более того, на данном этапе происходит кодирование информации. Для этих целей в организме позвоночных применяется двоичный код, составленный из пачек (залпов) импульсов и промежутков между ними. Существует два основных вида кодирования: частотное и пространственное.

Первое заключается в формировании различного числа импульсов в пачке, разного количества пачек, их длительности и длительности перерывов между ними в зависимости от силы нанесенного на рецептор раздражения. Пространственное кодирование осуществляет градацию силы раздражителя, задействуя различное количество нервных волокон, по которым одновременно проводится возбуждение.

В состав афферентного пути входят преимущественно А-α, А-β и А-δ волокна.

Пройдя по волокнам, нервный импульс попадает в рефлекторный центр, который в анатомическом смысле представляет собой совокупность нейронов, расположенных на определенном уровне центральной нервной системы и принимающих участие в формировании данного рефлекса. Функция рефлекторного центра состоит в анализе и синтезе информации, а также в переключении информации с афферентного на эфферентный путь.

В зависимости от отдела нервной системы (соматического и автономного) рефлексы, центр которых расположен в спинном мозге, различаются по локализации вставочных нейронов. Так, для соматической нервной системы рефлекторный центр расположен в промежуточной зоне между передними и задними рогами спинного мозга. Рефлекторный центр вегетативной нервной системы (тела вставочных нейронов) лежит в задних рогах. Соматический и вегетативный отделы нервной системы также отличаются по локализации эфферентных нейронов. Тела моторных нейронов соматической нервной системы лежат в передних рогах спинного мозга, тела преганглионарных нейронов автономной системы – на уровне средних рогов.

Аксоны обоих типов клеток формируют эфферентный путь рефлекторной дуги. В соматической нервной системе он непрерывающийся, его составляют волокна типа А-α. Исключением являются лишь А-γ волокна, проводящие возбуждение от клеток спинного мозга к интрафузальным волокнам мышечных веретен. Эфферентный путь автономной нервной системы прерывается в вегетативном ганглии, расположенном или интрамурально (парасимпатическая часть), или близ спинного мозга (отдельно или в симпатическом стволе – симпатическая часть). Преганглио-нарное волокно относится к В-волокнам, постганглионарное – к группе С.

Рабочим органом для соматического отдела нервной системы является поперечно-полосатая скелетная мышца, в вегетативной дуге эффектор – железа либо мышца (гладкая или поперечно-полосатая сердечная). Между эфферентным путем и рабочим органом расположен химический мионевральный либо нейросекре-торный синапс.

Рефлекторная дуга замыкается в кольцо благодаря обратной афферентации – потоку импульсов от рецепторов эффектора обратно в рефлекторный центр. Функция обратной связи – сигнализация в центральную нервную систему о выполненном действии. Если оно выполнено недостаточно, нервный центр возбуждается – рефлекс продолжается. Также за счет обратной афферентации осуществляется контроль периферической деятельности центральной нервной системой.

Различают отрицательную и положительную обратные связи. Первая при выполнении определенной функции запускает механизм, угнетающий эту функцию. Положительная обратная связь заключается в дальнейшей стимуляции функции, которая уже выполняется или в угнетении функции, которая уже угнетена. Положительная обратная афферентация встречается редко, так как приводит биологическую систему в неустойчивое положение.

Простые (моносинаптические) рефлекторные дуги состоят лишь из двух нейронов (афферентного и эфферентного) и различаются только в проприоцептивных рефлексах. Остальные дуги включают все выше указанные компоненты.

ЦНС

Центральная нервная система, включающая головной и спинной мозг, обеспечивает самые сложные взаимоотношения организма с окружающей средой, управляя деятельностью всех тканей, органов и систем, отвечая за приспособление и формируя целенаправленное, сознательное поведение человека. Согласно нейронной теории, центральная нервная система представляет собой совокупность нервных клеток, связанных между собой синап-тическими соединениями. Нервные клетки, сочетаясь в структурах головного и спинного мозга, образуют скопления – нервные центры, специализированные на выполнение определенной функции и отвечающие за то или иное действие или состояние. Среди таких образований можно назвать центры чувствительные, двигательные, вегетативные, центры психических функций и другие. В пределах центральной нервной системы они располагаются непроизвольно и имеют определенную четкую локализацию (например, дыхательный и сосудодвигательный центр в продолговатом мозге). В ЦНС проходит большое количество волокон, соединяющих разные части мозга.

Различают нервные центры двух типов. Центры ядерного типа – это объединение нервных клеток со сходной морфологией и функционированием, соединенных синапсами. Такие центры встречаются в спинном мозге, стволе головного мозга и белом веществе конечного мозга. Для экранного типа характерно распределение нейронов по слоям. На них проецируются нервные импульсы. Центры экранного типа обнаруживаются в коре головного мозга, мозжечка, буграх четверохолмия промежуточного мозга, в сетчатке.

Назад Дальше