А вот создатель фрактальной геометрии французский математик Бенуа Мандельброт сравнил структуру Вселенной с перистым облаком. Ученый был уверен, что вообще весь мир построен по фрактальному принципу: он имеет «волокнистую» структуру, во многом схожую с кроной дерева или бронхами легких.
Но если это и на самом деле так, – а многие факты говорят как раз в пользу этой точки зрения, – то многие общепризнанные теории, объясняющие структуру мироздания, придется пересмотреть. Ведь в основе их лежат главным образом постулаты теории относительности, которые, как известно, применимы лишь в однородной Вселенной, в которой материя распределена относительно равномерно. Во фрактальной же Вселенной законы, открытые Эйнштейном, неприменимы.
А вот российский астроном Андрей Линде считает, что бесконечный космос состоит из множества вселенных, которые абсолютно не связаны друг с другом. При этом одни вселенные рождаются, другие – гибнут. И Большой взрыв, породивший наш мир, далеко не уникальное событие, поскольку он не первый и не последний. Весь великий космос постоянно сотрясается бессчетным количеством взрывов, порождающих новые вселенные.
Астроном Андрей Линде считает, что бесконечный космос состоит из множества вселенных, которые абсолютно не связаны друг с другом
Но это все гипотезы. А вообще пока никто не может ответить: почему во Вселенной возникли такие гигантские структуры, и как долго шло их формирование?
И еще к вопросу размножения вселенных. В это трудно поверить, но астрономы утверждают, что это на самом деле так, хотя этот факт их весьма и весьма удивил. И действительно, удивляться было чему.
Дело в том, что в ходе одного исследования астрономы установили, что разные карликовые галактики имеют равную массу.
Этот факт был установлен во время изучения этих объектов в Млечном Пути, которое проводила группа американских астрономов. Ученым в ходе исследования удалось измерить массы 18 из 23 галактик, окружающих этот бесчисленный звездный рой.
А чтобы измерить массу, астрономы производят точные измерения скоростей движения звезд в каждой галактике: чем больший разброс в этих скоростях, тем выше масса галактики в целом.
Так вот, ученые установили следующее: несмотря на то, что каждая из этих 18 галактик состоит из разного количества звезд – от нескольких тысяч до десятков миллионов, – общая масса их центральных «ядер» практически одинакова и равна массе приблизительно 10 миллионов Солнц.
Объяснить этот феномен довольно сложно. И тем не менее одна гипотеза на сей счет все же существует. Предполагается, что очень маленькие карлики, в отличие от своих «стандартных» собратьев, содержат большее количество темной материи. И именно эта материя, которую нельзя «увидеть», и дает им дополнительную массу.
Что влияет на появление при столь значительных диспропорциях в содержании темной материи такой согласованности в массах карликовых галактик, сказать пока трудно. Впрочем, как и ответить на вопрос: почему не существует галактик меньше этого определенного веса?
Вообще-то астрономы склоняются к мнению, что имеется некоторый критический порог, после которого начинается процесс образования галактик. И не исключено, что у более мелких скоплений материи слишком слабая гравитация, чтобы они могли стимулировать образование звезд.
Галактика из стекла
Ученым давно известно, что в космическом пространстве встречаются кристаллические образования, по своему составу напоминающие стекло. Например, такие кристаллы в небольших количествах найдены в пределах нашей Галактики. В частности, у некоторых звезд, сходных по строению с нашим Солнцем.
Такие же кристаллические осколки были обнаружены инфракрасным космическим телескопом «Спитцером» в ходе наблюдений за выбросами с кометы Темпель-1, последовавшими после того, как в нее врезался зонд НАСА.
На Земле искорки стеклянных кристалликов можно заметить на песчаных берегах, а ночью они регистрируются в земной атмосфере среди пыли, приносимой сюда вместе с метеорами.
Найти же подобные «стекляшки» за границей Млечного Пути ученым долгое время не удавалось. И вот, наконец, свершилось. В 2006 году тот же телескоп «Спитцер» «разглядел» уникальный тип сталкивающихся галактик: их ядра покрыты облаками, в состав которых входят микроскопические кристаллы, по своему составу сходные с осколками обыкновенного стекла.
Действительно, это и в самом деле спекшийся песок, состоящий из силикатных зерен. Но чтобы этот «песок», по своему составу похожий на стекло, возник, требовался определенный температурный режим.
Не меньшее удивление у исследователей вызвал и тот факт, что такие хрупкие структуры, как микроскопические кристаллы, смогли сохраниться в агрессивной звездной среде. Ведь они очень быстро разрушаются. Возможно, скорость их образования превосходит темп их разрушения.
«Стеклянные» галактики, обнаруженные «Спитцером», в значительной степени отличаются от Млечного Пути. У них чрезвычайно высокая светимость в инфракрасном диапазоне, а также они содержат много пыли. За эти свойства их назвали ультралюминесцентными инфракрасными галактиками.
Инфракрасный космический телескоп «Спитцер»
Обычно это сталкивающиеся галактики со смешивающимися ядрами. Они, по сути, представляют собой вселенские «плавильные печи», в которых разрушаются и вновь появляются массивные звезды. У многих из них есть центральные исполинские черные дыры, мало чем отличающиеся от квазаров.
Что же касается «стеклянных кристаллов», то они скорее всего формируются массивными звездами в галактических центрах. И когда эти звезды взрываются в качестве сверхновых, то они накануне этого процесса и рассыпают, словно фейерверк, стеклянную пыль.
Однако эти кристаллы-«неженки» недолговечны. Ученые рассчитали, что частицы, появившиеся во время взрыва сверхновой, бомбардируют это кристаллическое стекло, переводя его в аморфное состояние. И длится этот цикл появления кристаллического вещества и его последующего разрушения очень короткое время.
Телескоп «Спитцера» как раз и дал возможность астрономам увидеть такое короткоживущее облако из кристаллизованных силикатов, созданных звездами из двух сталкивающихся галактик.
Астрофизики предполагают, что открытие «стеклянных галактик» позволит лучше понять процессы, в ходе которых происходит образование, эволюция и слияние галактик, включая и наш Млечный Путь.
Глава 4. Невероятные звезды
Рождение сверхновой звезды
Небо в ясный день представляет в общем-то довольно скучную и однообразную картину: раскаленный шар Солнца и чистый бескрайний простор, иногда украшенный облаками или редкими тучами.
Другое дело – небо в безоблачную ночь. Оно обычно все усыпано яркими скоплениями звезд. При этом надо учесть, что на ночном небе невооруженным глазом можно видеть от 3 до 4,5 тысячи ночных светил. И все они принадлежат Млечному Пути, в котором находится и наша Солнечная система.
По современным представлениям звезды – это раскаленные газовые шары, в недрах которых происходит термоядерный синтез ядер гелия из ядер водорода с выделением колоссального количества энергии. Именно она и обеспечивает светимость звезд.
Самая близкая к нам звезда – наше Солнце, расстояние до которого 150 миллионов километров. А вот звезда Проксима Центавра, следующая по удаленности, находится от нас на расстоянии 4,25 светового года, или в 270 тысяч раз дальше, чем Солнце.
Есть звезды, в сотни раз превышающие по размеру Солнце и во столько же раз уступающие ему в этом показателе. Однако массы звезд меняются в гораздо более скромных пределах – от одной двенадцатой массы Солнца до 100 его масс. Более половины видимых звезд являются двойными, а иногда и тройными системами.
Вообще же, число звезд в видимой нам Вселенной можно обозначить числом 125 000 000 000 с одиннадцатью дополнительными нулями.
Теперь, чтобы избежать путаницы с нулями, астрономы ведут учет уже не отдельных звезд, а целых галактик, считая, что в среднем в каждой из них находится порядка 100 миллиардов звезд.
Американский астроном Фриц Цвики впервые начал заниматься целенаправленным поиском сверхновых звезд
Еще в 1996 году ученые определили, что с Земли можно увидеть 50 миллиардов галактик. Когда же в строй был введен орбитальный телескоп имени Хаббла, которому не мешают помехи земной атмосферы, число видимых галактик подскочило до 125 миллиардов.
Благодаря всевидящему глазу этого телескопа астрономы проникли в такие вселенские глубины, что увидели галактики, которые появились всего через один миллиард лет после Великого взрыва, породившего нашу Вселенную.
Для характеристики звезд используются несколько параметров: светимость, масса, радиус и химический состав атмосферы, а так же ее температура. А используя ряд дополнительных характеристик звезды, можно также определить и ее возраст.
Каждая звезда – это динамичная структура, которая рождается, растет и затем, достигнув определенного возраста, тихо умирает. Но случается и такое, что она вдруг взрывается. Это событие приводит к масштабным изменениям в той области, которая прилегала к взорвавшейся звезде.
Так, возмущение, последовавшее за этим взрывом, распространяется с гигантской скоростью, и в течение нескольких десятков тысяч лет захватывает огромное пространство в межзвездной среде. В этой области резко, до нескольких миллионов градусов, повышается температура, значительно увеличивается плотность космических лучей и напряженность магнитного поля.
Такие особенности вещества, выброшенного взорвавшейся звездой, позволяют ему сформировать новые звезды и даже целые планетные системы.
По этой причине как сверхновые звезды, так и их остатки очень пристально изучаются астрофизиками. Ведь сведения, полученные в ходе исследования этого явления, могут расширить знания об эволюции нормальных звезд, о процессах, происходящих при рождении нейтронных звезд, а также выяснить детали тех реакций, в результате которых образуются тяжелые элементы, космические лучи и т. д.
Одно время те звезды, яркость которых неожиданно возрастала более чем в 1000 раз, астрономы называли новыми. Они появлялись на небе неожиданно, внося изменения в привычную конфигурацию созвездий. Внезапно увеличившись в максимуме в несколько тысяч раз, их блеск спустя какое-то время резко уменьшался, а спустя несколько лет их яркость становилась такой же слабой, как и до взрыва.
Следует отметить, что периодичность вспышек, во время которых звезда освобождается от одной тысячной своей массы и которую с огромной скоростью выбрасывает в мировое пространство, считается одним из основных признаков рождения новых звезд. Но, в то же время как это ни странно, взрывы звезд не ведут ни к существенным изменениям в их структуре, ни даже к их разрушениям.
Как часто в нашей Галактике случаются такие события? Если учитывать лишь те звезды, которые по своей яркости не превышали 3-ю звездную величину, то, согласно историческим хроникам и наблюдениям ученых-астрономов, в течение пяти тысяч лет наблюдались не более 200 ярких вспышек.
Но когда стали проводиться исследования других галактик, то стало очевидным, что яркость новых звезд, которые появляются в этих уголках космоса, нередко равна светимости всей галактики, в которой эти звезды появляются.
Конечно, появление звезд с такой светимостью – событие неординарное и абсолютно не похожее на рождение обычных звезд. Поэтому еще в 1934 году американские астрономы Фриц Цвикки и Вальтер Бааде предложили те звезды, максимальная яркость которых достигает светимости обычных галактик, выделить в отдельный класс сверхновых и самых ярких звезд. При этом следует иметь в виду, что вспышки сверхновых в современном состоянии нашей Галактики – явление крайне редкое, происходящее не чаще чем раз в 100 лет. Наиболее же яркие вспышки, которые зафиксировали китайские и японские трактаты, произошли в 1006 и 1054 годах.
Через пятьсот лет, в 1572 году, вспышку сверхновой звезды в созвездии Кассиопеи наблюдал выдающийся астроном Тихо Браге. В 1604 году в созвездии Змееносца рождение сверхновой звезды увидел Иоганн Кеплер. И с тех пор таких грандиозных событий в нашей Галактике не отмечалось.
Возможно, связано это с тем, что Солнечная система занимает в нашей Галактике такое положение, что наблюдать в оптические приборы вспышки сверхновых с Земли можно лишь в половине ее объема. В остальной же части этому мешает межзвездное поглощение света.
А поскольку в других галактиках эти явления происходят примерно с той же частотой, что и в Млечном Пути, основные сведения о сверхновых в момент вспышки были получены по наблюдениям за ними в других галактиках…
Впервые целенаправленным поиском сверхновых звезд в 1936 году начали заниматься астрономы В. Бааде и Ф. Цвикки. В ходе трехлетних наблюдений в разных галактиках ученые обнаружили 12 вспышек сверхновых, которые впоследствии были подвергнуты более тщательному исследованию с помощью фотометрии и спектроскопии.
Более того, применение более усовершенствованной астрономической аппаратуры позволило расширить список вновь открытых сверхновых. А внедрение автоматизированного поиска привело к тому, что в год ученые обнаруживали более сотни сверхновых. Всего же за короткое время было зафиксировано 1500 этих объектов.
В последние годы с помощью мощных телескопов за одну ночь наблюдений ученые открывали более 10 далеких сверхновых звезд!
В январе 1999 года произошло событие, которое потрясло даже современных астрономов, привыкших ко многим «фокусам» Вселенной: в глубинах космоса была зарегистрирована вспышка в десять раз ярче всех тех, которые фиксировались учеными раньше. Заметили ее два исследовательских спутника и телескоп в горах Новой Мексики, снабженный автоматической фотокамерой. Произошло это уникальное явление в созвездии Волопаса. Чуть позже, в апреле того же года, ученые установили, что расстояние до вспышки – девять миллиардов световых лет. Это почти три четверти радиуса Вселенной.
Подсчеты, произведенные астрономами, показали, что за несколько секунд, в течение которых длилась вспышка, энергии выделилось во много раз больше, чем произвело Солнце за пять миллиардов лет своего существования. Что же стало причиной столь невероятного взрыва? Какие процессы породили этот грандиозный энергетический выброс? Ответить конкретно на эти вопросы наука пока не может, хотя существует предположение, что такое огромное количество энергии могло произойти в случае слияния двух нейтронных звезд.
Бессмертная звезда
На протяжении последнего столетия в звездных мирах астрономы открывают все новые и новые уникальные, а порой и экзотические объекты. И каких только уникумов не обнаружили ученые за эти годы: нейтронные звезды, черные дыры, новые и сверхновые звезды.