Коллоидная химия. Шпаргалка - Мухачева Е. С. 2 стр.


2

4

2–

4

Измеряя интенсивность светорассеяния в растворах при разных концентрациях, также определяют молекулярные массы полимеров. Угловая зависимость светорассеяния для больших частиц, а также степень поляризации рассеянного света дают информацию о форме частиц (или макромолекул). Кроме того, нефелометрия используется при исследовании эмульсий и других коллоидных систем, в метеорологии, физике моря при изучении некоторых биологических объектов. Нефелеметрический анализ пригоден для определения веществ в области концентраций 10

–5

–4

Турбидиметры измеряют общее рассеяние света под всеми углами по уменьшению интенсивности света, прошедшего через суспензию, образованную частицами определяемого вещества в жидкой фазе (по эффективной абсорбции света), и могут применяться лишь для бесцветных золей. Из-за малой точности турбидиметрия используется только для определения компонентов, для которых нет удовлетворительных фотометрических и других методов анализа. По методам регистрации все приборы делятся на визуальные и фотоэлектрические с различными типами фотоэлементов и фотоумножителей. Фотоумножители применяются обычно в нефелометрах, поскольку в них необходимо измерять весьма слабые световые потоки.

7. Оптические свойства коллоидов. Статическое рассеяние света. Оптическая анизотропия

Взаимодействие света с дисперсными системами имеет ряд особенностей, связанных с рассеянием света частицами дисперсной фазы. При прохождении светового пучка через оптически неоднородную среду – дисперсную систему – обычно наблюдается светящийся конус (конус Тиндаля), видимый на темном фоне. Такое рассеяние света коллоидными растворами называется эффектом Тиндаля. Он характерен для растворов коллоидных систем (например, золей металлов, табачного дыма), в которых частицы и окружающая их среда различаются по показателю преломления. Если размеры частиц меньше половины длины волны света, то происходит рассеяние света в результате его дифракции. Область видимого света характеризуется длиной волн от 760 до 400 нм. Поэтому в молекулярных и коллоидных системах видимый свет рассеивается, а в проходящем свете эти растворы прозрачны. Наибольшей интенсивности рассеяние света достигает в коллоидных системах, для которых светорассеяние является характерной качественной особенностью. Обнаружение в растворе пути луча источника света при рассматривании раствора перпендикулярно к направлению этого луча позволяет отличить коллоидный раствор от истинного. Если же длина волны падающего света превышает линейные размеры частицы примерно в 10 раз, то произойдет дифракция световой волны, вызывающая светорассеяние, причем рассеяние света в пространстве симметрично и называется рэлеевским рассеянием по имени исследователя. Дж. Рэлей создал теорию светорассеяния коллоидных растворов и предложил уравнение, характеризующее этот процесс.

Дж. Рэлеем был рассмотрен простейший случай рассеяния света при следующих условиях:

1) малой концентрации дисперсной системы;

2) малом размере частиц (отношение длины волны падающего света formula к радиусу частицы r не менее 10);

3) изометричной форме частиц.

8. Поглощение света дисперсными системами, уравнение Бугера-Ламберта-Бера. Определение размеров коллоидных частиц

Уравнение Рэлея справедливо для монодисперсных разбавленных коллоидных растворов при размерах частиц дисперсной фазы r < 40–70 нм. Более общие выводы о рассеянии света, справедливые для систем всех степеней дисперсности, сформулированы в теории Г. Ми. В данной теории учитывается, что при больших размерах частиц картина рассеяния света осложняется возникающими электрическими и магнитными полями. Максимум рассеяния согласно Г. Ми имеет место при размерах частиц около 0,25λ, где λ – длина волны видимой части спектра.

Явления рассеяния и поглощения света связаны также с такими свойствами, как окраска растворов, концентрация растворенного вещества. Поглощение света имеет избирательный характер. Поглощение света для молекулярных растворов определяется по уравнению Бугера-Ламберта-Бера:

I = I

0

kcδ

где I и I

0

kcd

Из данного уравнения можно вывести соответствующие уравнения для определения относительной прозрачности и относительного поглощения:

I / I

0

kcδ

(I

0

II

0

kcδ

Для коллоидных растворов в уравнение Бугера-Ламберта-Бера вносят поправку, которая необходима для учета рассеяния света. Количество рассеянного света эквивалентно дополнительному количеству поглощенного света. В связи с этим приведем модифицированную формулу, в которой учитывается явление светорассеяния:



где v – объем коллоидной частицы.

Из последнего уравнения можно вывести формулу для расчета размеров коллоидной частицы. Предположим, что частица имеет правильную сферическую форму.

Тогда радиус этой частицы будет определяться так:



Эмпирически радиус частицы в жидком растворе можно определить методом ультрамикроскопии. Для этого при помощи микрометрической окулярной шкалы выделяют определенный объем коллоидного раствора, в котором визуально подсчитывают количество коллоидных частиц. Если известна масса частицы, то, учитывая плотность диспергированного вещества, можно определить объем и размеры частицы.

Поскольку ультрамикроскоп позволяет косвенно судить о форме коллоидных частиц, то необходимо принять во внимание две формулы. Если форма частицы представляет собой куб, то справедливо, что



если частица представляет собой сферу, то



где С – массовая концентрация коллоидного раствора; V – выделенный оптический объем; v – число частиц в объеме V; L – ребро куба; D – диаметр сферы.

9. Поверхностные явления. Роль поверхностных явлений в процессах, протекающих в дисперсных системах

Своеобразие дисперсных систем определяется большой удельной поверхностью дисперсной фазы и физико-химическим взаимодействием дисперсной фазы и дисперсионной среды на границе раздела фаз. C повышением дисперсности вещества все большее значение имеют его свойства, определяемые поверхностными явлениями, т. е. совокупностью процессов, происходящих в межфазовой поверхности. Эти свойства обусловлены избытком свободной энергии поверхностного слоя, особенностями его структуры и состава.

Поверхностные явления могут иметь физический характер или сопровождаться химическими превращениями; они протекают на жидких (легкоподвижных) и твердых межфазных границах. Поверхностные явления, связанные с действием поверхностного натяжения и вызываемые искривлением жидких поверхностей раздела, называются также капиллярными явлениями. К ним относятся:

1) капиллярное всасывание жидкостей в пористые тела;

2) капиллярная конденсация, установление равновесной формы капель;

3) установление газовых пузырей;

4) установление менисков.

Свойства поверхности контакта двух твердых тел или твердого тела с жидкой и газовой средами определяют условия таких явлений, как адгезия, смачивание, трение.

Молекулярная природа и свойства поверхности могут коренным образом изменяться в результате образования поверхностных мономолекулярных слоев или фазовых (полимолекулярных) пленок. Такие изменения часто происходят вследствие физических процессов (адсорбции, поверхностной диффузии, растекания жидкости) или химического взаимодействия компонентов соприкасающихся фаз. Любое «модифицирование» поверхностного (межфазного) слоя обычно приводит к усилению или ослаблению молекулярного взаимодействия между контактирующими фазами. Физические или химические превращения в поверхностных слоях сильно влияют на характер и скорость гетерогенных процессов – коррозионных, каталитических, мембранных и др. Поверхностные явления отражаются и на типично объемных свойствах тел. Так, уменьшение свободной поверхностной энергии твердых тел под действием адсорбционно-активной среды вызывает понижение их прочности (эффект Ребиндера).

Особую группу составляют поверхностные явления, обусловленные наличием в поверхностном слое электрических зарядов:

1) электроадгезионные явления;

2) электрокапиллярные явления;

3) электродные процессы.

Поверхностные явления имеют место в любой гетерогенной системе, состоящей из двух или нескольких фаз, поэтому их роль в природных и технологических процессах чрезвычайно велика. Во взаимосвязи броуновского движения и поверхностных явлений протекают все процессы, приводящие к изменению размеров частиц высокодисперсной фазы (коагуляция, коалесценция, пептизация, эмульгирование). В грубодисперсных и макрогетерогенных системах на первый план выступает конкуренция поверхностных сил и внешних механических воздействий. Поверхностные явления, влияя на величину свободной поверхностной энергии и строение поверхностного слоя, регулируют зарождение и рост частиц новой фазы в пересыщенных парах, растворах и расплавах, взаимодействие коллоидных частиц при формировании разного рода дисперсных структур. На глубину и направление процессов, обусловленных поверхностными явлениями, часто решающим образом влияют ПАВ, меняющие в результате адсорбции структуру и свойства межфазных поверхностей.

10. Поверхность раздела фаз. Свободная поверхностная энергия. Поверхностное натяжение. Адсорбция

Свойства участка фазы, примыкающего к поверхности раздела фаз, отличаются от свойств фазы в объеме: частицы на поверхности каждой фазы образуют особую поверхностную фазу, свойства которой отличаются от свойств внутренних областей фазы. Частицы на поверхности находятся в другом окружении по сравнению с частицами, находящимися в объеме фазы, т. е. взаимодействуют как с однородными частицами, так и с частицами другого рода. Поэтому средняя энергия g

s

g

v

поверхностная энергияGsN

s

Gs = N (g

s

v

Очевидно, что общая величина поверхностной энергии фазы будет определяться величиной ее поверхности S. Поэтому для характеристики поверхности раздела, отделяющей данную фазу от другой вводится понятие поверхностного натяжения δ – отношение поверхностной энергии к площади поверхности раздела фаз:



Как и поверхностная энергия фазы, поверхностное натяжение может иметь положительное или отрицательное значение. Оно положительно, если находящиеся на поверхности частицы взаимодействуют с частицами этой же фазы сильнее, чем с частицами другой фазы (и, следовательно, g

s

> gvδ δ величиной удельной поверхности фазыS/V Свободную энергию фазыGGsGv

G = G

s

+ G

v

= δS + KV.

Разделив это выражение на объем фазы, получаем:



Из последнего уравнения следует, что при неизменном объеме фазы вклад поверхностной энергии в общую энергию фазы возрастает с увеличением удельной поверхности или степени дисперсности фазы. Если степень дисперсности фазы невелика, вкладом поверхностной энергии в полную энергию фазы обычно пренебрегают. Вклад поверхностного слоя в свойства фазы и системы учитывают при изучении дисперсных систем – гетерогенных систем, одна из фаз которых является сплошной (дисперсионная среда), а другая – раздробленной (дисперсная фаза).

На границе конденсированной фазы с газом поверхностное натяжение всегда положительно, поскольку частицы конденсированной фазы взаимодействуют друг с другом сильнее, чем с молекулами газа. Конденсированная фаза будет стремиться уменьшить свою поверхностную энергию, уменьшая либо площадь поверхности фазы (поэтому капля жидкости в невесомости принимает форму сферы), либо поверхностное натяжение. Процесс самопроизвольного изменения концентрации вещества у поверхности раздела двух фаз называется адсорбцией.

11. Термодинамическое описание разделяющей поверхности

Разделяющая поверхность – это геометрическая поверхность, которая воспроизводит форму поверхности разрыва и располагается параллельно последней. Если представить идеализированную систему в которой каждая из интенсивных величин имеет характерные для данной объемной фазы значения, и сравнить ее с реальной системой, то получим, что разности соответствующих экстенсивных параметров в данных системах представляют собой поверхностные избытки. Например, состав поверхностного слоя определяется избыточным числом молей компонентов n

i

s

Для нахождения последнего необходимо рассмотреть изменение концентрации компонента системы вдоль нормали, направленной из одной фазы в другую. В реальных системах данное изменение выражается функцией С (x), которая представляет собой кривую и имеет постоянные величины в глубине фаз. В идеализированной системе данная функция представлена двумя прямыми, доходящими до разделяющей поверхности. Состав поверхностного слоя будет выражен формулой:



где n

i

s

xbxa

C

b

C

a

s

Итак, параметр n

i

s

С

U

s

UU

α

U

β

или

U = U

s

U

α

U

β

Члены правой части этих выражений различаются тем, что U

α

U

β

U

s

Аналогичные выражения записывают для других термодинамических функций: энтальпии, энтропии свободных энергий Гельмгольца и Гиббса.

Достоинством данного метода описания поверхностного слоя является отсутствие необходимости уточнения его границ. Функции, выражающие избытки, являются инвариантными в отношении толщины поверхностного слоя, однако они зависят от положения разделяющей поверхности.

Поверхностный слой может подвергаться воздействию изменений температуры и состава. Поэтому необходимо принять во внимание в качестве переменных поверхностные энтропию S

s

n

s

dU

s

T

s

dS

s

ds μ

s

dn

s

где dU

s

T

s

S

s

m

s

n

s

Данное уравнение находят путем вычитания уравнений для двух объемных фаз из выражения для внутренней энергии U всей системы. Согласно теории Гиббса для плоского поверхностного слоя последнее уравнение справедливо при любом положении разделяющей поверхности; для искривленной поверхности к нему добавляются члены, связанные с кривизной.

12. Адсорбция. Площадь, приходящаяся на одну молекулу в адсорбционном слое

Адсорбция (от лат. ad – «на, при» и sorbeo – «поглощаю») – это поглощение вещества из газообразной среды или раствора поверхностным слоем жидкости или твердого тела, следствием которого является самопроизвольное концентрирование веществ вблизи поверхности раздела фаз. Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а поглощаемое из объемной фазы вещество – адсорбатом. После адсорбции внутреннее притяжение частично компенсируется притяжением со стороны адсорбционного слоя, и поверхностное натяжение уменьшается. Слой жидкости, который прилегает к поверхности и равен по толщине радиусу сферы молекулярного взаимодействия, называется поверхностным слоем. Молекулы жидкости в поверхностном слое находятся под действием сил притяжения соседних молекул. Равнодействующая этих сил притяжения направлена в глубь жидкости, передвижение молекул из глубины жидкости в поверхностный слой требует затрат работы на преодоление сил межмолекулярного сцепления (когезии). Работа, выполняемая для увеличения поверхности жидкости на единицу, называется поверхностным натяжением. Поверхностное натяжение можно рассматривать как силу, которая действует на единицу длины контура, который ограничивает поверхность и пытается ее сократить по нормали к касательной к поверхности. Поверхностное натяжение измеряется в Дж/м

2

Для единицы поверхности (S):

Назад Дальше