Будущее разума - Лисова Наталья И. 3 стр.


Представление о том, что мозг с телом соединяют электрические пути, систематически не исследовалось вплоть до 1930-х гг., когда доктор Уайлдер Пенфилд начал работать с двумя больными эпилепсией, часто страдавшими от изнурительных судорог и приступов, любой из которых мог их погубить. Последним шансом для таких пациентов была операция на головном мозге, при которой удалялись части черепа, а мозг обнажался. (Поскольку мозг лишен болевых рецепторов, человек все это время мог быть в сознании, и доктор Пенфилд использовал во время операции лишь местное обезболивание.)

Доктор Пенфилд обратил внимание, что на стимуляцию определенных частей коры мозга при помощи электрода реагируют различные части тела. И внезапно понял, что может нарисовать приблизительный план соответствия участков коры мозга телу человека (рис. 1). Рисунки у него получились настолько точными, что их до сих пор используют почти в неизменном виде. И на ученое сообщество, и на публику они произвели очень сильное впечатление. На одной из схем можно видеть, какая приблизительно область мозга отвечает за какую функцию и насколько важна для организма эта функция. К примеру, кисти рук и рот для человека жизненно важны, на их управление отводится значительная доля мозга, тогда как нервные рецепторы спины на схеме почти незаметны.

Далее Пенфилд обнаружил, что при стимулировании электричеством височной доли его пациенты неожиданно вспоминают с кристальной ясностью и заново переживают давно забытые эпизоды. Он испытал настоящий шок, когда в ходе операции на мозге пациент вдруг воскликнул: «Я будто… стоял в дверях школы… я слышал, как мама говорит по телефону с тетей и приглашает ее зайти к нам вечером». Пенфилд понял, что прикасается к воспоминаниям, погребенным глубоко внутри мозга. В 1951 г., когда он опубликовал свои результаты, представления о мозге кардинально изменились.


Карта мозга

К 1950–1960-м гг. появилась возможность составить приблизительную карту мозга, разграничив его области и даже определив функции некоторых из них.

На рис. 2 представлен неокортекс, или новая кора, – внешний слой головного мозга, разделенный на четыре доли. Вообще, неокортекс у человека очень развит. Задача всех долей мозга, кроме одной, – принимать и обрабатывать сигналы от органов чувств; исключение составляет лобная доля, расположенная за лобной костью. Префронтальная кора – самая передняя часть лобной доли – является тем местом, где возникают рациональные мысли. Информация, которую вы в настоящий момент получаете из книги, обрабатывается в префронтальной коре. Повреждение этой области может отрицательно повлиять на вашу способность к планированию и обдумыванию будущего, как это произошло с Финеасом Гейджем. Именно в этой области мозга оценивается получаемая информация и планируются действия.



Теменная доля располагается в верхней части мозга. Правое полушарие контролирует чувственное внимание и образ тела; левая – тонкие движения и некоторые аспекты речи. Повреждение этой области может вызвать множество проблем, в том числе и трудности с распознаванием некоторых частей собственного тела. Затылочная доля располагается в самой задней части мозга и обрабатывает полученную от глаз визуальную информацию. Повреждение этой области может вызвать слепоту и зрительные нарушения.

Височная доля отвечает за речь (только слева), а также за визуальное распознавание лиц и некоторые эмоции. Повреждение этой области может лишить человека речи или способности узнавать знакомые лица.

Эволюционирующий мозг

Если взглянуть на другие органы, такие как мышцы, кости и легкие, то можно заметить в их устройстве очевидный порядок. Но структура мозга может показаться наблюдателю совершенно хаотичной; мозг как бы собран из отдельных независимых частей. Мало того, попытки построить схему мозга иногда называют «картографией для тупых».

Чтобы разобраться в структуре мозга, которая кажется случайной, в 1967 г. доктор Пол Маклин из Национального института психического здоровья попытался рассмотреть эволюцию мозга с позиции теории Чарльза Дарвина. Он разделил мозг на три части. (Дальнейшие исследования показали, что эта модель нуждается в уточнении, но мы используем ее как грубый набросок для приблизительного объяснения общей структуры мозга.) Во-первых, он заметил, что задняя и центральная часть человеческого мозга, включая мозговой ствол, мозжечок и подкорковые узлы, почти идентична по строению мозгу рептилий. Эти структуры, известные как «рептильный мозг», – самые древние структуры мозга, – управляют фундаментальными функциями организма, такими как равновесие, дыхание, пищеварение, сердцебиение и поддержание кровяного давления. Кроме того, они контролируют такие поведенческие схемы, как драка, охота, спаривание и территориальность, необходимые для выживания и воспроизведения себе подобных. Рептильный мозг существует примерно 500 млн лет (рис. 3).



Но по мере того как наши предки эволюционировали от рептилий к млекопитающим, мозг усложнялся, развиваясь и формируя совершенно новые структуры. Так возник мозг млекопитающего, или лимбическая система, которая расположена возле центральной части мозга и окружает структуры рептильного мозга. Лимбическая система развита у животных, живущих социальными группами, в частности у человекообразных обезьян. Кроме того, она содержит структуры, определяющие эмоции. Динамика социальных групп может быть достаточно сложной, и лимбическая система необходима, чтобы различать потенциальных врагов, союзников и соперников.

Среди частей лимбической системы, управляющих жизненно важными для социальных животных поведенческими схемами, можно назвать:

• гиппокамп – это ворота памяти, где кратковременные воспоминания преобразуются в долговременные. Название этой области переводится как «морской конек», что объясняется ее странной формой. Повреждение гиппокампа лишает человека способности сохранять воспоминания. Он навсегда остается пленником настоящего времени;

• мозжечковая миндалина – место, где эмоции, в первую очередь страх, регистрируются и формируются. Название тоже дано по форме;

• таламус – это что-то вроде релейной станции, которая собирает сенсорную информацию от мозгового ствола и направляет ее в разные участки коры. Название означает «внутренняя полость»;

• гипоталамус – этот орган регулирует температуру тела, суточный ритм, голод, жажду и некоторые аспекты размножения и наслаждения. Располагается он под таламусом – отсюда и название.

Наконец, у нас имеется третья, самая молодая область мозга млекопитающих – кора, внешний слой мозга. Самая поздняя в эволюционном отношении структура коры головного мозга – неокортекс (новая кора), который управляет когнитивным поведением. Лучше всего эта структура развита у человека: она составляет 80 % массы мозга, но при этом представляет собой лист толщиной с салфетку. У крыс неокортекс гладкий, а у людей он сильно извит; благодаря этой извитости в черепе человека умещается лист большой площади.

Мозг человека в определенном смысле напоминает музей, в котором хранятся остатки всех стадий эволюции человека на протяжении миллионов лет, когда мозг резко увеличивался по размеру и расширял свою функциональность. (Примерно такой же путь проходит младенец после рождения. Его мозг растет, возможно, имитируя этапы эволюции человека.)

Неокортекс выглядит скромно и не слишком внушительно, но внешность обманчива. Вы можете полюбоваться изысканной архитектурой мозга под микроскопом. Серое вещество состоит из миллиардов крохотных клеток, называемых нейронами. Они, как абоненты гигантской телефонной сети, получают сообщения от других нейронов по дендритам – отросткам, выходящим из одного конца нейрона. Из другого конца нейрона выходит длинное волокно, называемое аксоном. Аксон может через дендриты соединиться примерно с 10 000 нейронов. В точке соединения аксона с дендритом имеется крохотный промежуток – так называемый синапс. Синапсы работают как клапаны, регулируя поток информации в мозгу. Особые химические вещества, так называемые нейромедиаторы, могут проникать в синапс и влиять на ток сигналов. Такие нейромедиаторы, как дофамин, серотонин и норадреналин, помогают управлять потоками информации, движущимися по мириадам нервных путей, и оказывают мощное влияние на настроение, эмоции, мысли и сознание человека (рис. 4).

Это описание мозга примерно отражает состояние науки в 1980-е гг. Однако в 1990-е гг., когда развитие физики привело к появлению новых технологий, механизмы мышления стали изучаться в мельчайших подробностях, а нейробиологию ожидал бум научных открытий. Одной из рабочих лошадок, обеспечивших успех этой революции, стал аппарат МРТ.


МРТ: окно в мозг

Чтобы понять, почему принципиально новая техника помогла расшифровать процессы, происходящие в действующем мозге, нам придется вспомнить некоторые фундаментальные принципы физики.

Радиоволны – один из видов электромагнитного излучения – способны проходить сквозь живую ткань, не причиняя ей вреда. Аппараты МРТ, используя это свойство радиоволн, исследуют нашу черепную коробку. Технология магнитно-резонансного сканирования позволяет получить великолепные фотографии того, что прежде никто не рассчитывал когда-либо увидеть и запечатлеть: внутреннее устройство мозга и его деятельность в процессе работы, при различных эмоциях и при получении информации от органов чувств. Наблюдая танец крохотных огоньков в аппарате МРТ, можно проследить за движением мысли внутри мозга. Мозг при этом напоминает часы с открытым механизмом, где видно, как все устроено, и можно наблюдать за ритмичным движением крохотных рычажков и шестеренок.

Первое, что бросается в глаза при взгляде на аппарат МРТ, – это громадная цилиндрическая магнитная катушка, способная создать магнитное поле, в 20 000–60 000 раз превосходящее по мощности магнитное поле Земли. Именно из-за этого гигантского магнита аппарат МРТ может весить, к примеру, тонну, занимать целую комнату и стоить несколько миллионов долларов. (Аппараты МРТ безопаснее рентгеновских, поскольку не порождают вредных ионов. При компьютерной томографии, которая тоже способна давать трехмерные изображения, организм получает во много раз более серьезную дозу облучения, чем при обычном рентгеновском исследовании, поэтому проведение КТ-исследований нужно тщательно регулировать. Напротив, аппараты МРТ при надлежащей эксплуатации безопасны, проблемы могут возникнуть лишь из-за небрежности работников. В этих аппаратах создается настолько мощное магнитное поле, что при несвоевременном включении оставленные без присмотра металлические инструменты летят с огромной скоростью. Бывало, что люди при этом получали травмы и даже погибали.)

Аппарат МРТ работает следующим образом: пациент ложится на спину, и его на каталке задвигают внутрь цилиндра, в котором располагается две большие катушки, создающие магнитное поле. При включении магнитного поля ядра атомов в теле человека ведут себя примерно как стрелка компаса и выстраиваются вдоль силовых линий поля. Затем подается короткий радиоимпульс, заставляющий некоторые ядра развернуться. Позже, при возвращении в нормальное положение, эти ядра порождают вторичный импульс излучения, который принимается и анализируется аппаратом. Анализ этого слабого «эха» позволяет определить положение и природу излучающих атомов. Если летучая мышь умеет при помощи эха определять положение объектов на своем пути, то аппарат МРТ позволяет улавливать излучение мозга, после чего компьютеры реконструируют положение атомов и строят красивые трехмерные графические изображения.

Вначале, когда аппараты МРТ только появились, они могли показывать структуру мозга лишь в статике и на различных его участках. Однако в середине 1990-х гг. был изобретен новый вид МРТ, получивший название функциональной магниторезонансной томографии, или фМРТ; и теперь аппараты уже различали присутствие кислорода в крови в сосудах мозга. (Иногда ученые обозначают маленькой буквой перед аббревиатурой МРТ тип аппарата, но мы будем использовать аббревиатуру МРТ во всех случаях.) На полученных при помощи МРТ изображениях не виден непосредственно ток электричества в нейронах, но поскольку без кислорода нейроны не получат энергии, насыщенная кислородом кровь косвенно указывает на поток электрической энергии в нейронах и наглядно показывает, как различные области мозга взаимодействуют между собой.

МРТ-изображения опровергли представление о том, что мышление сосредоточено в едином центре. Напротив, можно видеть, что в процессе мышления электрическая энергия циркулирует по различным частям мозга. Отслеживая путь, который проходят мысли в голове человека, МРТ-аппараты помогли пролить свет на природу болезней Альцгеймера и Паркинсона, шизофрении и других психических заболеваний.

Серьезным преимуществом МРТ-аппаратов является то, что они могут с высокой точностью выделять крохотные, вплоть до десятых долей миллиметра, участки мозга и рассматривать их отдельно. МРТ-изображение – не просто точки на двумерном экране (пикселы), а точки в трехмерном пространстве (вокселы): в результате исследования мы получаем яркое трехмерное изображение мозга, сложенное из десятков тысяч цветных точек.

Различные химические элементы реагируют на разные частоты радиоволн по-разному, поэтому мы можем, изменяя частоту волны, определять, где какие элементы находятся. Как уже отмечалось, при фМРТ в основном отслеживаются атомы кислорода в крови и измеряют кровоток, но вообще-то аппарат МРТ можно настроить на любое вещество. В последнее десятилетие появилась новая разновидность МРТ – диффузионно-тензорная; она отслеживает движение воды в объеме мозга. Вода в мозге следует по нейронным путям, поэтому диффузионно-тензорная томография позволяет получить красивые картинки, напоминающие переплетение растущих в саду лиан. Теперь ученые могут мгновенно определить, как части мозга связаны между собой.

Однако у технологии МРТ есть и недостатки. Пространственное разрешение аппаратов МРТ не имеет себе равных и позволяет довести параметры воксела до размера булавочной головки во всех трех измерениях, а вот временно́е разрешение их подкачало. Чтобы сделать снимок кровотока мозга, требуется почти секунда; может быть, это немного, но если вспомнить, что электрические сигналы проходят сквозь мозг почти мгновенно, то получается, что МРТ может зарегистрировать не все детали мыслительного процесса.

Еще один недостаток – цена, составляющая миллионы долларов; врачам нередко приходится коллективно пользоваться одним аппаратом. Но, как часто бывает, развитие технологии со временем приведет к снижению стоимости аппаратуры.

Назад Дальше