Биология - Королев Виталий Александрович 3 стр.



Основные положения клеточной теории

1. Клетка – элементарная структурно-функциональная единица живой материи.

2. Клетки различных организмов сохраняют одинаковый принцип строения.

3. Размножение клеток происходит путем деления исходной материнский клетки.

4. Многоклеточные организмы – это совокупность различных клеток, интегрированных в единую систему живого организма.

Со времени создания клеточной теории наши представления о клетке существенно обогатились, однако суть клеточной теории осталась неизменной.


Химическая организация клетки

Живая клетка – это миниатюрный реактор, в котором не затухают химические процессы. Из 109 элементов периодической системы Д. И. Менделеева клетка включает около 70. Количественные соотношения их варьируют В клетках организма человека значительно преобладает четыре элемента: водород—10%, кислород—60%, углерод – 20%, азот – около 3%. Менее 2% приходится на следующие девять элементов: натрий, кальций, фосфор, железо, сера, калий, хлор, кремний, магний. Все указанные элементы составляют группу макроэлементов. Остальные элементы присутствуют в общем количестве 0,1% массы и относятся к микроэлементам: кобальт, цинк, медь, марганец, хром и другие.



Обратим внимание! Все химические компоненты клетки, вне зависимости от их количества, играют важную роль в жизнедеятельности организма.

В живой клетке химические элементы находятся либо в виде ионов, либо входят в состав молекул органических или неорганических веществ.

Органические вещества – это углеродсодержащие соединения, присутствующие в живых организмах – отсюда и термин органические. Неорганические вещества характерны для живой и неживой природы и имеют другую химическую организацию.


Неорганические вещества

Вода. Это компонент исключительной важности. Вода составляет 80% всей массы клетки. Всеобщая функция воды в клетках – цементирующая. Она состоит в образовании водородных связей между отдельными частицами и компонентами живой клетки. Молекула воды электрически асимметрична. Это электрический диполь, в котором каждый атом водорода несет положительный заряд, а кислорода —отрицательный. В результате и возникает сильное электростатическое напряжение: Н-связь.

Роль воды в клетке многообразна. Она предопределяет рН среды, от которой во многом зависит работа всех систем органов. Благодаря высокой теплоемкости, вода предохраняет клетку от резких колебаний температуры и способствует теплорегуляции. Это хороший растворитель для многих органических и неорганических веществ, а большинство химических реакций в клетке возможно только между растворенными веществами. Поступление и выведение веществ клеткой осуществляется в водных растворах. Вещества, хорошо растворимые в воде, называются гидрофильными. К ним относятся соли, кислоты, многие спирты. Хорошей растворимостью в воде обладает ряд белков и углеводов. Вещества, плохо растворимые в воде, называют гидрофобными. Среди них на первом месте стоят липиды (жиры). Явление гидрофильности и гидрофобности используется при построении полупроницаемых клеточных мембран. Вода является фактором, определяющим термостабильность клетки.

Минеральные соли. Подавляющая часть неорганических веществ клетки находится в виде солей. Они присутствуют в твердом состоянии или диссоциированы на ионы. Для процессов жизнедеятельности наиболее важны катионы К

+

2+

2+

4

-

2

4

-

-

3-

+

+

+

+


Органические вещества

Органические вещества в большинстве являются биополимерами. Это белки, углеводы, нуклеиновые кислоты. Биополимеры представляют высокомолекулярные химические соединения, состоящие из относительно однородных мономеров. Мономерами белков служат аминокислоты, углеводов (полисахаридов) – моносахариды, нуклеиновых кислот – нуклеотиды.

Биополимеры подразделяют на информационные: белки, нуклеиновые кислоты и неинформационные – углеводы. Липиды не относят к биополимерам. Указанные четыре класса органических соединений составляют основу живых систем.

Белки характеризуются высокой молекулярной массой и большим разнообразием. В организме человека насчитывается около 5 млн. типов белковых молекул. Несмотря на столь широкое представительство, белки образованы всего 20 мономерами – аминокислотами.



Двадцать аминокислот в составе белков



Аминокислоты делятся на две группы

1. Незаменимые аминокислоты не могут синтезироваться животными организмами и обязательно поступают с пищей (аргинин, валин, гистидин, изолейцин, лейцин, метионин, фенилаланин, треонин).

2. Заменимые аминокислоты синтезируются животной клеткой из незаменимых аминокислот или других соединений.

Наличие аминогруппы с основными свойствами и карбоксильной группы с кислотными свойствами дает возможность аминокислотам соединяться в единую цепь за счет прочных ковалентных связей при отщеплении молекулы воды. Ковалентные связи называют пептидными, а последовательное соединение аминокислот в белковой молекуле пептидом: дипептид, трипептид, полипептид. Возможно огромное количество вариантов последовательных наборов 20-ти аминокислот в белковой молекуле.

Белки имеют первичную, вторичную, третичную и четвертичную структуру.


Рис. 3. Структура белка. 1. Первичная. 2. Вторичная. 3. Третичная. 4. Четвертичная.


Первичная структура – это расположение аминокислот последовательно друг за другом в единую цепочку: – лизин – глутамин – валин – и т. д.

Вторичная структура представляет собой полипептидную цепь, закрученную ввиде спирали и имеющую слоисто-складчатое строение.

Третичная и четвертичная структура являются дальнейшим развитием белковой молекулы, которая усложняет пространственную укладку путем различного вида скручиваний. На уровнях третичной и четвертичной структур белки приобретают биологическую активность. Утрата белковой молекулой своей структурной организации называется денатурацией (происходит при изменении температуры, обезвоживании и пр.), а восстановление – ренатурацией. Главное условие полной ренатурации – сохранение первичной структуры белка.

Белки могут быть простыми и сложными. Простые белки состоят только из аминокислот, сложные белки имеют в своем составе другие органические соединения: нуклеиновые кислоты, углеводы, липиды, соединения фосфора, металлы. Соответственно их называют нуклеопротеиды, гликопротеиды, липопротеиды, фосфо- и металлопротеиды.


Функции белков в клетке

По разнообразию и значимости белки стоят на первом месте среди всех органических соединений. Им свойственны следующие функции:

1. Структурная – участие в строительстве клеточных мембран, хромосом, рибосом и других компонентов клетки.

2. Каталитическая. Белки-ферменты являются ускорителями внутриклеточных химических реакций, определяют их специфичность. Все известные ферменты делятся на две группы: простые (однокомпонентные), сложные (двухкомпонентные). Простые ферменты включают только белковую часть – апофермент. Сложные ферменты содержат белковую и небелковую части. Если небелковая часть легко отделяется и связывается с другими ферментами, ее называют коферментом. Ферменты могут иметь один или два активных центра. При наличии одного активного центра он связывается только с субстратом – веществом, на которое действует. В случаях двух активных центров один связывается с субстратом, другой с продуктом реакции. Все ферменты характеризуются специфичностью действия и саморегуляцией.

3. Энергетическая: при полном расщеплении 1г белка освобождается 17,6 кДж.

4. Сигнальная – белки, встроенные в поверхностные слои плазмалеммы (антигены), являются своеобразными «мишенями» для многих биологически активных веществ (гормоны).

5. Защитная – связанная с особой группой иммуноглобулинов, определяющих гуморальный иммунитет организма, кроме того многие белки образуют защитные покровы в виде чешуи, ногтей, копыт, волос и т. д.

6. Транспортная – с белками связан перенос ряда гормонов, а также кислорода (гемоглобин).

7. Двигательная – осуществляется сократительными (контрактильными) белками, с помощью которых происходит движение различных клеточных фибрилл (колебание жгутиков сперматозоидов, движение ресничек на поверхности клеток и др.)



Углеводы. Группа сложных органических соединений, в состав которых входят только атомы углерода, кислорода, водорода, азот отсутствует. Поскольку число атомов водорода в них в два раза превышает количество атомов кислорода, эти вещества названы углеводами.

Углеводы бывают простыми и сложными. Простые углеводы называют моносахаридами (мономеры). Сложные углеводы образованы несколькими мономерами и носят название полисахариды. Например, широко распространенные полисахариды крахмал, целлюлоза, гликоген в качестве мономера имеют глюкозу. Молекула целлюлозы образована цепочкой из нескольких сотен молекул глюкозы. Общая формула углеводов С

n

2

m

Функции углеводов. Главная роль углеводов – энергетическая. При окислении 1 г углеводов выделяется 17,6 кДж. Углеводы выполняют также структурную роль, входя в состав плазмалемм клеток (гликокаликс) и клеточных оболочек (целлюлоза).


Липиды представляют органические вещества нерастворимые в воде, но хорошо растворимые в эфире, бензине, ацетоне и др. Сами липиды могут являться растворителем для некоторых веществ, например, витаминов А, Е. По химическому составу липиды разнообразны и включают жирные кислоты, аминоспирты, аминокислоты, фосфорную кислоту. Между этими соединениями образуются различные виды химических связей. Все липиды делят на две большие группы: нейтральные жиры и фосфолипиды. Нейтральные липиды являются производными высших жирных кислот и трехатомного спирта глицерина. Обычно количество липидов в клетках невелико, всего 1,0—1,3%, но в некоторых специализированных клетках они составляют основную массу цитоплазмы (жировые клетки, отдельные виды яйцеклеток).

Главные функции липидов: структурная и энергетическая. Липиды входят в состав клеточных мембран (фосфолипиды). При расщеплении 1 г липидов выделяется 38,9 кДж энергии.

Строение остальных органических соединений клетки – нуклеиновых кислот, АТФ освещено в соответствующих главах.

Структурная организация клетки

Основными структурными компонентами клетки являются клеточные мембраны, ядро, цитоплазма с цитоскелетом, органеллы и включения.

І. Клеточная мембрана или плазмалемма представляет собой тонкую биологическую пленку, ограничивающую клетку. Она обеспечивает разделение двух фаз: внеклеточной со случайным набором ионов и молекул и внутриклеточной со строго упорядоченным их составом. Для поддержания таких концентрационных градиентов мембрана должна удовлетворять одному абсолютному требованию – необходима ее полная замкнутость. Поэтому все известные биологические мембраны образуют замкнутые пространства — компартменты. Другое важное свойство плазмалеммы – асcимметричность: ее внутренняя и наружная поверхность должны функционировать по-разному. В противном случае молекулы и ионы, вносимые в одном месте, будут столь же быстро выноситься в другом. Таким образом, главная функция клеточной мембраны – обеспечить поступление в клетку веществ и сохранить постоянство ее состава, то есть клеточный гомеостаз.

Основу плазмалеммы составляет двойной слой липидов, расположенных перпендикулярно поверхности. Липиды представлены фосфолипидами и холестеролом. Именно они обеспечивают структурную целостность мембраны. Оба вида липидов амфипатические: один конец молекулы – «головка» – полярный гидрофильный, другой конец – «двойной хвост» – неполярный гидрофобный. Если гидрофильную головку отделить от молекулы, она растворится в воде. Гидрофобный хвост, подобно растительному маслу, в воде не растворим. Гидрофильные головки липидов обращены кнаружи, а гидрофобные концы спрятаны вовнутрь (рис. 4).


Рис. 4. Схема строения липидного комплекса плазмалеммы.


Липидный бислой плазмалеммы прикрыт с обеих сторон белками, которые подразделяются на два класса. Первый класс – трансмембранные белки. Определенная часть их молекулы встроена в двойной липидный слой и пронизывает его насквозь.


Рис. 5. Общая композиция плазмалеммы.


В мембране возникают белковые поры. Второй класс составляют периферические белки, которые не встроены в липиды, а находятся на поверхности. Здесь они вступают в связь с определенными трансмембранными белками. Тем не менее, их можно отделить от мембраны и растворить в воде, в то время как трансмембранные белки не отделимы от липидов и не растворимы в водной среде. Периферические белки сконцентрированы на внутренней и наружной поверхности плазмалеммы. На наружной поверхности к ним примыкают углеводы, формирующие тонкое покрытие клетки — гликокаликс (см. рис. 5).


Функции клеточной мембраны

Клеточная мембрана выполняет две основные функции:

а) межклеточные взаимодействия; б) транспортные процессы.

Обе эти функции во многом определяются белками или гликопротеинами (сложные комплексы белков и углеводов) клеточной мембраны.

Межклеточные взаимодействия. Клетка воспринимает и трансформирует сигналы двух родов: из внешней среды и внутренней среды организма. Раздражители из внешней среды могут иметь различную природу: физическую (кванты света), химическую (вкусовые молекулы), механические (сжатие или растяжение). Из внутренней среды поступают сигналы преимущественно информационного характера, например, гормоны, нейромедиаторы.

Межклеточные взаимодействия реализуются по принципу сигнал – ответ. Сигнал воздействует на специфический клеточный рецептор, который обычно представлен особым поверхностным белком или гликопротеином. Ответ состоит в адекватной реакции клетки.

Транспортные процессы. Перенос веществ через клеточную мембрану может осуществляться в виде пассивного транспорта, не требующего затрат энергии и активного транспорта, сопряженного с потреблением энергии.

Пассивный транспорт связан с движением по градиенту концентрации. Он может происходить в обоих направлениях: из клетки в среду и из среды в клетку. Так движутся небольшие полярные (СО

2

2

2

2

белки-переносчики

Осмос – перенос вещества из одного раствора в другой через мембрану. Мембраны, проницаемые не для всех веществ, а лишь для определенных, называют полупроницаемыми. Осмос играет важную роль во многих биологических процессах. Мембрана, окружающая нормальную клетку крови, проницаема лишь для молекул воды, кислорода, растворенных в крови питательных веществ и продуктов клеточной жизнедеятельности. Она непроницаема для больших белковых молекул, находящихся в растворенном состоянии внутри клетки. Поэтому белки, столь важные для биологических процессов, остаются внутри клетки.



Активный транспорт происходит против градиента концентрации и потому является энергозависимым. Он происходит при участии ферментов АТФаз. Наиболее известен натрий-калиевый насос. Его функция выкачивать из клетки Na

Назад Дальше