Контроль качества изготовления и технология ремонта композитных конструкций - Воробей Вадим Васильевич


Вадим Васильевич Воробей, Виктор Борисович Маркин

Контроль качества изготовления и технология ремонта композитных конструкций

Введение

Среди наиболее важных требований, предъявляемых к конструкциям современных летательных аппаратов (ЛА) и ракетно-космической техники, можно назвать минимальную массу, максимальную жесткость и прочность, максимальный ресурс работы конструкций в условиях эксплуатации, высокую надежность. В значительной мере перечисленные требования обеспечиваются выбором материала и совершенством технологии изготовления конструкции из данного материала.

Комплексу перечисленных требований больше всего удовлетворяют композиционные материалы (композиты) на основе современных углеродных, борных, органических и стеклянных волокон в сочетании с полимерными, металлическими, углеродными, керамическими и другими видами матриц.

При изготовлении конструкций из композиционного материала (КМ) совершенство технологии определяется выбором оптимальных параметров технологического процесса, техническим уровнем используемого оборудования и оснастки, наличием надежных методов неразрушающего контроля как самой конструкции, так и полуфабрикатов для их производства. В настоящее время технология производства элементов ЛА из КМ развивается опережающими темпами практически во всех промышленно развитых странах. Надежность любой конструкции определяется правильным выбором проектных данных и стабильностью технологических параметров в процессе изготовления, достаточностью контрольных операций и возможностью ремонта в процессе контроля изделий. Конструкции из КМ, нашедшие широкое применение в аэрокосмической технике и машиностроении (рисунок 1, 2), поставили перед разработчиками современных технологий многочисленные проблемы, связанные с сокращением производственно-экономических потерь в процессе их изготовления и эксплуатации.

Несовершенство технологического оборудования, используемого для получения исходных компонентов КМ (нитей, лент, тканей, особенно углеродных), а также для переработки их в изделие, низкий уровень автоматизации этого оборудования, разброс параметров технологического процесса получения композиционных материалов, недостаточный контроль параметров технологического процесса при получении препрегов, формировании пакета КМ, термообработке, механической обработке, приводят к возникновению различного рода производственных дефектов, снижающих несущую способность и работоспособность разрабатываемых конструкций. Особенность композитов, как известно, в том, что они не являются материалом в классическом смысле этого слова, таким как, например, металлы, фактически это – конструкция, создаваемая в процессе изготовления изделия. При этом композиты, выполненные из одного и того же наполнителя (волокна) и связующего по одинаковой технологии, могут иметь различные физико-механические характеристики, которые способны изменяться в широком диапазоне за счет выбора числа направлений армирования и объемных долей волокна в каждом направлении армирования.


Рисунок В.1 – Применение композитов в ракетной и аэрокосмической технике:

РДТТ – ракетный двигатель твердого топлива; ЖРД – жидкое ракетное топливо


Рисунок В.2 – Применение углерод-углеродных композиционных материалов в различных областях народного хозяйства [5]


Важнейшее достоинство композитов – возможность создавать из них элементы конструкций с заранее заданными свойствами, наиболее полно отвечающими характеру и условиям работы. Многообразие волокон и матричных материалов, различных схем армирования, используемых при создании композитов, позволяет направленно регулировать прочность, жесткость, уровень рабочих температур и другие свойства путем подбора состава, соотношения компонентов и макроструктуры компонента.

При изготовлении композиционных материалов и конструкций из них важнейшее место занимают процессы формирования силовой основы – каркаса композита, структура которого определяется направлением действия главных напряжений для каждой конкретной конструкции и типом применяемого материала.

В современных конструкциях используются каркасы, образованные из слоев, армированных параллельными непрерывными волокнами, с хаотическим и пространственным армированием. Широко используются композиты, где структура каркаса образована пространственным плетением нитей и жгутов, и композиты со стержневым армированием (свойства их определяются свойствами стержней, изготовленных из прямолинейных нитей и жгутов). На рисунке В.3 представлены различные виды армирования каркасов в композиционных материалах. Например, волокнистое армирование позволяет использовать принципиально новые методы проектирования и изготовления изделий, основанные на том, что материал и изделие создаются одновременно в рамках одного и того же технологического процесса.

В результате совмещения армирующих элементов и матрицы образуется новый комплекс свойств композита, в том числе и свойства, которыми изолированные компоненты не обладают.

Появление ряда новых свойств связано с гетерогенной структурой, обусловливающей наличие границы раздела между волокнами и матрицей, в частности армирующими элементами и матрицей, существенно повышает трещиностойкость композита. Высокое сопротивление развитию разрушающих трещин в волокнистых материалах обусловлено их работоспособностью при значительных накопленных повреждениях.

Нестабильность технологических процессов изготовления конструкций из композиционных материалов, связанная с новизной и сложностью их реализации, ставит на первый план проблемы качества выпускаемой продукции. Обеспечение контроля качества всего объема выпускаемой продукции возможно только при условии применения методов и средств неразрушающего контроля (НК), который относится к числу наиболее приоритетных направлений научно-технического прогресса.


Рисунок В.3 – Классификация композитов по конструктивному признаку:

а – хаотически армированные: 1 – короткие волокна, 2 – непрерывные волокна; б – одномерно-армированные: 1 – однонаправленные непрерывные, 2 – однонаправленные короткие; в – двумерно-армированные: 1 – непрерывные нити, 2 – ткани; г – пространственно-армированные: 1 – три семейства нитей; 2 – n семейств нитей


Существует четыре наиболее важных направления развития неразрушающего контроля и диагностики: интеллектуализация методов и средств контроля и диагностики, разработка единой системы контроля качества технических объектов и окружающей среды, совершенствование диагностических технологий, организационное обеспечение неразрушающего контроля и диагностики на международном уровне [18].

В комплексе действий, направленных на обеспечение надежности и долговечности разрабатываемых конструкций из композиционных материалов, использование высокоэффективных методов неразрушающего контроля имеет решающее значение, поскольку малейшая ошибка в определении характера дефекта или его пропуск могут привести к труднопредсказуемым последствиям. Несмотря на существующие разнообразные методы и средства НК, до сих пор они не могут удовлетворять в отдельности потребности современного производства.

Анализ катастроф и их связи с конструкционными аспектами требует целенаправленной работы по изучению обстоятельств разрушений, их причин и сопутствующих факторов, выявлению определяющих процессов, оценке параметров и диапазонов их безопасных изменений. Исследования такого плана осуществляются с различных теоретических и концептуальных позиций с использованием различных информационных технологий. Изучается влияние особенностей конструктивного исполнения, технологии изготовления, характера нагрузок и воздействий. Большое внимание уделяется оценке эффективности применения высокопрочных материалов, методов неразрушающего контроля, различных ограничителей нагрузок, живучести конструкций в условиях аварий, проектируемых и запроектных, применяемых методов расчета прочности и ресурса. Обычно исследования этого направления базируются на традиционных методах строительной механики и теориях конструкционной прочности [15].

Особо рассматриваются вопросы механики, физики и химии деградационных процессов, приводящих в связи с необратимыми изменениями и повреждениями в структуре материалов к снижению прочностных характеристик, образованию и росту трещин, а также к катастрофическим отказам конструкций. Характер деградационных процессов и их роль в формировании разрушений существенно зависят от типа технической системы. Например, для баллонов давления и сосудов высокого давления основными причинами считаются механическая усталость, дефектность изготовления и коррозионные процессы в металлических фрагментах конструкции. Следовательно, дефектность конструкции и наличие трещин и расслоений остаются определяющими источниками разрушений.

Другой важной стороной обеспечения качества продукции является разработка и обоснование допустимости специализированных технологий ремонта создаваемых конструкций с учетом специфики структурных и технологических дефектов. Реализация этой проблемы обеспечивает значительное повышение выхода годной продукции в условиях дефицита исходных материалов и высокой стоимости конечной продукции.

В учебном пособии исследуются и разрабатываются вопросы, связанные с технологическими процессами контроля качества, изготовления и ремонта конструкций из композиционных материалов. Широкое применение конструкций из композитов потребовало разработки новых методов и аппаратуры неразрушающего контроля для осуществления непрерывного контроля непосредственно в процессе формирования композиционных материалов и изделий из них. Анализ существующих структурных дефектов в композиционных материалах и технологических дефектов в конструкциях позволяет разработать научно обоснованные технологии ремонта, обеспечивающие требуемую надежность создаваемых изделий.

Глава 1

Неразрушающий контроль параметров процесса изготовления конструкций из композиционных материалов

1.1 Требования, предъявляемые к методам контроля

Обеспечение высокого качества и надежности изделий из КМ невозможно без применения эффективных современных методов контроля на всех стадиях производственного цикла: проектирования (разработка), изготовления, эксплуатации. При этом каждой стадии соответствуют свои методы контроля. Наиболее эффективны неразрушающие физические методы контроля (НФМК) качества, применяемые на стадии как изготовления (обработки, исследования), так и эксплуатации изделий. Следует отметить, что наибольший эффект от НФМК достигается при применении его в мелко- и среднесерийном производстве крупногабаритных изделий, когда возможен сплошной контроль качества. В крупносерийном производстве более эффективны статистические методы выборочного контроля, при этом методы контроля качества подразделяются по количественным, качественным или альтернативным признакам.

К количественным методам контроля относят такие, которые позволяют регистрировать точные численные значения параметров, определяющих качество изделия. Качественные методы позволяют отметить лишь категории, классы (сортность, хорошее, плохое и т. д.), к которым принадлежит контролируемое изделие. В том случае, когда изделия подразделяются на годные или дефектные, осуществляют контроль по альтернативному признаку, что является частным случаем контроля по качественному признаку.

Определение соответствия изделия данным условиям (по размерам, физико-механическим свойствам, структуре материала, состоянию поверхности – шероховатости, наличию тех или иных дефектов и др.) осуществляется путем проведения соответствующих измерений или контроля, поэтому методике контроля отводится исключительная роль.

Основные требования, предъявляемые к контролю, заключаются в следующем.

1. Вероятность того, что доброкачественное изделие будет забраковано, должна иметь некоторое определенное значение, которое будет определяться чувствительностью и точностью применяемых методов и аппаратуры.

2. Вероятность принятия изделия низкого качества (дефектного) должна иметь некоторое определенное значение, зависящее от квалификации контролеров, эффективности применяемых методов и аппаратуры.

3. Применяемый метод или аппаратура должны обеспечить непрерывность проведения контроля технологических процессов.

4. Метод и аппаратура должны обеспечить сплошной контроль всех выпускаемых изделий.

Контроль по своим признакам может быть разрушающий, неразрушающий (неповреждающий), аналитический, метрологический (поверочный). В настоящее время наиболее широкое распространение получили разрушающие и аналитические методы. Основное их достоинство заключается в том, что они дают возможность определить объективные абсолютные параметры материалов и изделий. Такой важный параметр изделия, как прочность, наиболее объективно определяется путем его разрушения с соблюдением режимов нагружения, вида нагрузки и обеспечения условий окружающей среды (температура, влажность).

Аналитические методы в большинстве случаев являются также разрушающими, так как связаны с взятием проб или изготовлением специальных образцов. Они отличаются высокой точностью измерения. Основные недостатки разрушающих и аналитических методов контроля заключаются в следующем:

– не выполняют всех требований, предъявляемых к контролю (требование 4), так как для их выполнения пришлось бы разрушить все изделия;

– не позволяют выявить изменение свойств конкретного изделия при воздействии на него внешних факторов (температуры, нагрузок, влаги и т. д.) в процессе эксплуатации;

– не обеспечивают непрерывности измерений при контроле кинетики или динамики технологических процессов изготовления изделий;

– не дают возможности определить реальную изменчивость свойств материала непосредственно в изделии на различных его участках без вырезки образцов;

– не позволяют выявить внутренние дефекты в материале изделия без его разрезки.

Метрологический контроль служит в основном для контроля (поверки) методов контроля и направлен на определение точности и чувствительности применяемых методов и аппаратуры.

Неразрушающие физические методы контроля (НФМК) в последнее время все более активно начинают применяться в производстве изделий из КМ. Они вполне удовлетворяют всем требованиям, предъявляемым к контролю, и не имеют недостатков, присущих разрушающим и аналитическим методам. В соответствии с ГОСТ 18353-73, принято 10 видов неразрушающего контроля: акустический, капиллярный, магнитный, оптический, радиационный, радиоволновой, тепловой, течеисканием, электрический, электромагнитный (вихревых токов) [18]. Каждый из указанных видов подразделяется на большое количество методов.

Дальше