Именно в эту противоречивую эпоху Визер ввел понятие «глобальные вычисления». Он видел много дальше эпохи персональных компьютеров и предсказывал, что когда-нибудь электронные чипы станут настолько дешевыми и доступными, что найти их можно будет везде – в одежде, в мебели, в стенах наших домов, даже в нашем собственном теле. И все они будут подключены к Интернету, будут делиться данными, делать нашу жизнь приятнее, отслеживать все наши пожелания. Куда бы мы ни направились, вездесущие чипы будут молча выполнять наши желания. Среда обитания человека как бы оживет.
Для своего времени мечта Визера была совершенно фантастической, даже абсурдной. Персональные компьютеры тогда были дороги и в большинстве своем даже не подключались к Интернету. Мысль о том, что миллиарды крохотных чипов когда-нибудь станут дешевле гороха, казалась бредом.
А потом я спросил, почему он так уверен в этой своей революции. Он спокойно ответил, что в данный момент мощность компьютеров растет экспоненциально и пока конца этому не видно. Прикиньте сами, предложил он мне. Компьютерная революция – всего лишь дело времени. (Грустно только, что сам Визер не увидел предсказанной революции; он умер от рака в 1999 г.)
Движущей силой пророческой мечты Визера было утверждение, известное как закон Мура – эмпирическое правило, управлявшее развитием компьютерной индустрии на протяжении полувека с лишним. Это правило, как метроном, задавало темп развития современной цивилизации. Сам по себе закон Мура очень прост: он гласит, что мощность компьютеров удваивается примерно каждые полтора года. Сформулировал его в 1965 г. Гордон Мур, один из основателей корпорации Intel. Действие этого закона обеспечило кардинальную перестройку мировой экономики, накопление сказочных богатств и необратимое изменение образа жизни современного человека. Если обозначить падение цен на компьютерные чипы, а также стремительный рост их скорости, мощности обработки данных и памяти на графике, построенном в логарифмическом масштабе, получим, что данные за последние пятьдесят лет замечательно ложатся на прямую. Более того, если добавить в этот график данные по ламповым и даже механическим вычислительным машинам и устройствам, прямую Мура можно протянуть в прошлое более чем на 100 лет.
Экспоненциальный рост иногда сложно себе представить, потому что человек, вообще говоря, мыслит линейно. Изменения накапливаются плавно и постепенно, так что иногда их вообще не замечаешь. Но проходит несколько десятков лет – и все вокруг неузнаваемо меняется.
Согласно закону Мура с каждым Рождеством ваши компьютерные игры становятся чуть ли не вдвое более мощными (в смысле числа используемых транзисторов), чем это было год назад. Более того, с течением лет этот ежегодный прирост достигает громадных размеров. К примеру, мы получаем на день рождения почтовую открытку с чипом, который исполняет для нас поздравительную песенку (обычное дело, ничего особенного). Так вот, этот чип по вычислительной мощности превосходит все, чем владели союзники в 1945 г. Гитлер, Черчилль или Рузвельт пошли бы на убийство ради того, чтобы заполучить этот чип. А мы? Пройдет день рождения – и мы просто выбросим открытку вместе с чипом. Сегодня в вашем сотовом телефоне заключена бо`льшая вычислительная мощность, чем та, что находилась в распоряжении NASA в 1969 г., когда два его астронавта впервые ступили на Луну. Видеоигры, которым для симуляции трехмерных объектов и сцен требуются громадные вычислительные мощности, используют больше компьютерных ресурсов, чем универсальные вычислительные машины прошлых десятилетий. Сегодняшняя игровая приставка стоимостью 300 долларов по вычислительной мощности сравнима с военным суперкомпьютером 1997 г., стоившим не один миллион.
Разницу между линейным и экспоненциальным ростом вычислительных мощностей можно наглядно представить себе, прочитав статью 1949 г. Тогда журнал Popular Mechanics предрек, что компьютеры в будущем будут развиваться линейно и со временем, возможно, всего лишь удвоят или утроят мощность. Автор статьи писал: «Если сегодня в вычислителе, таком как ENIAC, содержится 18 000 электронных ламп и весит он 30 тонн, то в будущем компьютеры, возможно, будут содержать всего 1000 ламп и весить всего 1,5 тонны».
(Надо отметить, что мать-природа любит и ценит мощь экспоненциальной зависимости. Один-единственный вирус, захватив человеческую клетку, способен вынудить ее произвести несколько сотен копий самого себя. Увеличивая собственную численность в каждом поколении в 100 раз, один вирус может всего за пять поколений превратиться в 10 миллиардов точно таких же вирусов. При этом не стоит удивляться, что один-единственный вирус, проникая в человеческий организм, где функционируют триллионы здоровых клеток, всего через неделю или около того обеспечивает вам простуду.)
Мощность компьютеров за прошедшие несколько десятилетий многократно выросла, но этого мало. Принципиально изменилась техническая база, на которой реализуются вычислительные мощности, а с ними и вся экономика. Посмотрим, как это происходило.
• 1950-е гг. Компьютеры на вакуумных электронных лампах были гигантскими устройствами и представляли собой целые залы с настоящими джунглями из проводов, катушек и стальных шкафов. Только военные были достаточно богаты, чтобы финансировать эти чудовищные аппараты.
• 1960-е гг. Электронные лампы сменились транзисторами, и компьютеры среднего класса постепенно вышли на коммерческий рынок.
• 1970-е гг. Интегральные схемы с сотнями транзисторов позволили создать мини-компьютер размером с большой письменный стол.
• 1980-е гг. Микросхемы с десятками миллионов транзисторов сделали возможными персональные компьютеры, которые уже умещались в чемоданчике.
• 1990-е гг. Интернет соединил сотни миллионов компьютеров в единую глобальную компьютерную сеть.
• 2000-е гг. Глобальные вычисления освободили микросхему от компьютера, так что чипы теперь повсюду.
Таким образом, прежняя парадигма (один процессор внутри настольного компьютера или лэптоп, соединенный с обычным компьютером) постепенно сменяется новой (тысячи процессоров, разбросанных по всевозможным устройствам, включая мебель, бытовую технику, картины, стены, автомобили и одежду, и все они подсоединены к Интернету и общаются между собой).
Когда в устройстве – все равно каком – появляется процессор, самая обычная вещь чудесным образом преображается. Пишущая машинка превратилась в текстовый процессор. Обычный телефон – в сотовый. Видео- и фотокамеры – в умные цифровые устройства. Механические игровые автоматы – в видеоигры. Фонографы – в iPod. Самолеты, управляемые человеком, – в несущие смерть беспилотники-дроны. И в каждом случае промышленность, выпускавшая соответствующие устройства, умирала и возрождалась полностью обновленной.
Со временем практически все вокруг нас станет «умным». Микросхемы настолько подешевеют, что будут стоить меньше пластиковой упаковки и заменят собой штрихкоды. Компании, не сделавшие свою продукцию «умной», в один прекрасный день будут вытеснены с рынка конкурентами, которые вовремя об этом позаботились.
Разумеется, вокруг нас по-прежнему будет немало компьютерных мониторов, но внешне они будут напоминать скорее кусок обоев, картину в рамке или семейную фотографию, а не сегодняшний компьютер. Представьте все картины и фотографии, которые украшают сегодня ваш дом; а теперь вообразите, что каждая из них «оживет», станет подвижной и свяжется с Интернетом. Подвижные изображения будут стоить не больше статичных и постепенно сменят их на стенах наших гостиных.
Судьба компьютеров – как и других массовых технологий, таких как электричество, бумага и водопровод, – стать невидимыми, т. е. врасти в ткань нашей жизни и нашего мира, быть везде и нигде. Их предназначение – молча и незаметно исполнять наши желания.
Сегодня, входя в комнату, мы автоматически ищем взглядом электрический выключатель, поскольку уверены: дом электрифицирован, в стенах есть проводка, и в комнате можно включить свет. В будущем первое, что мы будем искать при входе в незнакомую комнату, – это интернет-портал, ведь мы будем уверены: это «умная» комната. Романист Макс Фриш (Max Frisch) однажды сказал: «Техника – это способность так организовать свой мир, чтобы с ней не приходилось сталкиваться».
Кроме всего прочего, закон Мура позволяет нам предсказывать на ближайшее будущее эволюцию компьютера. В последующие десять лет процессоры объединятся со сверхчувствительными датчиками; компьютеры научатся видеть и различать болезни, потенциальные происшествия и несчастные случаи и будут заранее, пока ситуация не вышла из-под контроля, предостерегать человека о возможных опасностях. Они научатся в какой-то степени узнавать нас по голосам и лицам, а также разговаривать и общаться с человеком на формализованном языке. Они смогут самостоятельно создавать целые виртуальные миры, о которых сегодня мы можем только мечтать. Около 2020 г. стоимость электронного чипа, возможно, упадет настолько, что процессоры станут дешевле бумаги. Все вокруг наполнится миллионами чипов, способных выполнять наши команды.
В конце концов само слово «компьютер» будет забыто.
Чтобы удобнее было говорить о будущем прогрессе науки и техники, я разделил каждую главу книги на три части: ближайшее будущее (от сего дня до 2030 г.), середина века (с 2030 по 2070 г.) и, наконец, далекое будущее, с 2070 по 2100 г. Конечно, такое деление условно, а датировки приблизительны, но они помогут нам ориентироваться во временны`х рамках различных тенденций, о которых пойдет речь в книге.
Стремительный рост вычислительных мощностей к 2100 г. обеспечит нам едва ли не божественное могущество и позволит управлять окружающей действительностью при помощи одной только силы мысли. Подобно мифическим богам, которые умели мановением руки или легким кивком головы двигать предметы и изменять человеческую жизнь, мы научимся воздействовать на вещественный мир силой своего сознания. Мы будем поддерживать постоянный мысленный контакт с электронными чипами, разбросанными повсюду в нашем окружении, и эти молчаливые слуги будут улавливать и безотказно исполнять наши мысленные приказы.
Помню, когда-то я смотрел эпизод «Звездного пути», где экипаж звездолета «Энтерпрайз» попадает на планету, населенную греческими богами, и перед астронавтами возникает бог Аполлон – гигантская фигура, способная ослепить и ошеломить земной экипаж божественными чудесами. Поначалу наука XXIII в. ничего не может противопоставить могуществу бога, который тысячи лет назад повелевал небесами античной Греции. Но стоило землянам побороть шок от встречи с греческими богами – такими знакомыми и могущественными, – как они поняли, что у могущества этих существ должен быть вполне материальный источник и что Аполлон, скорее всего, находится в ментальной связи с центральным компьютером и мощными механизмами, которые, собственно, и исполняют его приказы. Как только экипаж нашел и уничтожил силовую станцию, Аполлон превратился в обычного смертного.
Это, конечно, всего лишь голливудская сказка. Однако экстраполируя последние научные открытия и технические достижения, ученые уже могут представить себе тот день, когда мы тоже научимся телепатически управлять компьютерами и получим силу легендарного Аполлона.
Ближайшее будущее (с настоящего момента до 2030 г.)
Интернет-очки и контактные линзы
Сегодня мы поддерживаем связь с Интернетом при помощи компьютеров и сотовых телефонов. Но в будущем Интернет будет повсюду.
Существует несколько способов вывести связь с Интернетом на линзу. Изображение может передаваться со стекол очков через линзу глаза непосредственно на сетчатку. Можно также проецировать изображение на линзу, которая в этом случае будет играть роль экрана. Или можно прикрепить экран к оправе очков наподобие крохотной линзы, какими пользуются ювелиры. Глядя сквозь стекла очков, мы будем, будто на киноэкране, видеть перед собой интернет-экран. При этом устройство дистанционного управления в руках позволит нам управлять действиями компьютера по беспроводной связи. А можно просто шевелить пальцами в воздухе и таким образом управлять изображением – ведь компьютер постоянно регистрирует положение наших пальцев.
К примеру, ученые Вашингтонского университета с 1991 г. занимаются разработкой виртуального ретинального монитора VRD (virtual retinal display) – устройства, в котором красный, зеленый и синий лазерные лучи проецируются непосредственно на сетчатку глаза. При разрешении 1600 × 1200 точек на дюйм и угле зрения 120° VRD-монитор может создавать яркое жизненное изображение, сравнимое с картинкой на киноэкране. Устройство для генерации изображения может быть встроено в шлем, в специальные или обычные очки.
У меня еще в 1990-е гг. была возможность испытать на себе такие интернет-очки, один из первых их образцов, разработанных учеными медиалаборатории Массачусетского технологического института (MIT). Внешне этот прибор выглядел как обычные очки, только справа и немного сбоку на них была закреплена дополнительная цилиндрическая линза длиной около полудюйма. При обычном положении этой дополнительной линзы я прекрасно видел сквозь очки, но стоило слегка нажать пальцем – и крохотная линза занимала место перед глазом. При этом передо мной появлялось легко различимое изображение компьютерного экрана, на взгляд чуть меньше стандартного. Оно было удивительно четким; казалось, что смотришь прямо в экран. Более того, взяв в руки небольшое – размером с сотовый телефон – устройство с кнопками, я получил возможность управлять курсором на экране и даже печатать команды.
В 2010 г., когда я был ведущим одной из программ телеканала Science Channel, мне довелось побывать в форте Беннингс (штат Джорджия) и увидеть последнюю модель «Интернета для поля боя» армии США под названием «Пехотинец». Я надел особый шлем с закрепленным сбоку миниатюрным экранчиком. Передвинув экран так, чтобы он оказался перед глазами, я внезапно увидел поразительное зрелище: панораму поля битвы, на которой крестиками было обозначено расположение своих и вражеских войск. «Туман войны» внезапно рассеялся, GPS-сенсоры точно определили положение воинских частей, танков и зданий и обозначили на схеме местности. Стоило нажать кнопку – и изображение мгновенно изменилось, открыв мне прямо на поле боя выход в Интернет и предоставив информацию о погоде, диспозиции войск, стратегии и тактике.
В более продвинутой версии прибора интернет-экран мог бы проецироваться непосредственно в глаз через контактные линзы со встроенным в пластик чипом и LCD-экраном. Бабак Парвиз (Babak A. Parviz) и его группа в Университете Вашингтона в Сиэтле разрабатывают базу для создания контактных линз с Интернетом; пока это лишь прототип, но позже такая технология, возможно, изменит обычную технику доступа в Интернет.
Парвиз считает, что одним из ближайших по времени приложений этой технологии могло бы стать устройство для постоянного контроля уровня глюкозы в крови диабетиков. Линза будет демонстрировать вам текущие значения параметров, характеризующих состояние вашего организма. Но это лишь начало. Парвиз уверен, что наступит день, когда мы сможем загружать из Интернета любые фильмы, песни, сайты или информационные сообщения и видеть их на контактной линзе-экране. По существу, линза станет экраном полнофункционального развлекательного центра, и можно будет лежа на диване наслаждаться художественными фильмами. Через этот же центр можно будет подключиться к офисному компьютеру и получить доступ к хранящимся там файлам и программам. Достаточно будет моргнуть глазом, чтобы прямо с пляжа связаться с офисом и организовать видеоконференцию.