Кто за главного? Свобода воли с точки зрения нейробиологии - Завалов Михаил Игоревич 2 стр.


Люди распространились по всему миру и живут в самых разных условиях окружающей среды. В то же время наши ближайшие родственники, шимпанзе, находятся под угрозой исчезновения. Почему же, спросите вы, люди как вид так успешны, тогда как ближайшие родственники человека с трудом выживают? Мы можем решать такие задачи, которые ни одному другому животному не по зубам. Значит, человек явно обладает чем-то, чего у других животных нет. Однако нам трудно признать это. Нам в начале XXI века доступно куда больше знаний, которые помогут ответить на подобные вопросы, чем любознательным и дотошным исследователям прошлого. А таких среди наших предков было немало: интерес людей к тому, что мы и кто мы, стар как мир. На стенах Храма Аполлона в Дельфах, построенного в VII веке до нашей эры, был высечен призыв “Познай самого себя”. Человека всегда завораживали вопросы о происхождении разума, собственного “я” и человеческой природы. Что порождало такое любопытство? Едва ли о подобных материях размышляет ваша собака, лежа на диване.

Сегодня специалисты в области нейронаук изучают мозг так: залезают в него, регистрируют его сигналы, стимулируют, анализируют и сравнивают с мозгом других животных. Подобным образом были раскрыты некоторые тайны мозга и построено множество новых гипотез. Однако нам не стоит зазнаваться. Еще в V веке до нашей эры Гиппократ, словно он был современным нейробиологом, писал: “Полезно также знать людям, что не из иного места возникают в нас удовольствия, радости, смех и шутки, как именно отсюда (от мозга), откуда также происходят печаль, тоска, скорбь и плач. И этой именно частью мы мыслим и разумеем, видим, слышим и распознаем постыдное и честное, худое и доброе, а также все приятное и неприятное. ‹…› От этой же самой части нашего тела мы и безумствуем, и сумасшествуем, и являются нам страхи и ужасы.”{1} Детали Гиппократ описал, конечно, расплывчато, но основные принципы изложил.

Думаю, науке ничего не остается, кроме как объяснить механизмы всех этих процессов. При этом нам лучше следовать совету Шерлока Холмса, известного своим научным методом: “Трудность в том, чтобы выделить из массы измышлений и домыслов досужих толкователей и репортеров несомненные, непреложные факты. Установив исходные факты, мы начнем строить, основываясь на них, нашу теорию и попытаемся определить, какие моменты в данном деле можно считать узловыми”{2}.

Этот подход – ничего, кроме фактов, – позволяет приступить к решению головоломки, и первые исследователи мозга начали именно в таком духе. Что это за штука? Давайте возьмем труп, вскроем череп и поглядим. Понаделаем в мозге дыр. Давайте исследуем людей, переживших инсульт. Попробуем записать электрические сигналы мозга. Изучим, как он меняется в процессе развития. Как вы увидите, такого рода простые вопросы мотивировали первых ученых и продолжают вдохновлять многих и сегодня. Однако постепенно вы осознаете, что безнадежно даже пытаться разрешить вопрос о существовании собственного “я” (в противовес концепции, согласно которой человек – лишь машина), не изучая поведение организмов и не разбираясь, для чего именно предназначена наша развита́я психическая система. Как отметил великий исследователь мозга Дэвид Марр, невозможно понять, как работает крыло птицы, изучая ее оперение. По мере накопления фактов нужно давать им функциональный контекст, а затем анализировать, какие ограничения он может накладывать на составляющие его элементы, которые обеспечивают выполнение конкретной функции. Итак, начнем.

Развитие мозга

То, что звучит так коротко и отрывисто, как “развитие мозга”, должно быть несложным для изучения и понимания, однако у человека развитие – очень широкое понятие. Оно охватывает не только нейронный, но и молекулярный уровень, и не только когнитивные изменения во времени, но и воздействие внешнего мира. Оказывается, это отнюдь не простое понятие: попытка отделить факты от предположений то и дело уводит нас по длинному и трудному пути с множеством окольных тропинок. Такая участь и ждала ученых, попытавшихся разобраться в основах развития и работы мозга.

Эквипотенциальность

В начале XX века ученым пришлось пойти по такому обходному пути. Последствия до сих пор осаждают и мир науки, и неспециалистов: ведутся нескончаемые споры о том, что больше влияет на развитие человека – наследственность или среда. В 1948 году в Дартмутском колледже, моей альма-матер, двое величайших психологов Канады и Америки – Карл Лешли и Дональд Хебб – встретились, чтобы обсудить такой вопрос: является ли мозг “чистой доской” и обладает ли в значительной степени тем, что сегодня мы называем пластичностью, или же он несет в себе ограничения и сам каким-то образом детерминирован собственной структурой?

На тот момент теория чистой доски господствовала уже около двадцати лет, и Лешли был одним из ее первых сторонников. Он был в числе исследователей, впервые применивших физиологические и аналитические методы для изучения механизмов мозга и интеллекта животных. Лешли аккуратно повреждал кору головного мозга крыс, а затем оценивал нанесенный животным урон количественно, анализируя их поведение до и после операции. Он обнаружил, что объем удаленных им тканей коры влиял на обучение и память, а локализация – нет. Это убедило его, что утрата навыков связана с размером отрезанного участка коры, а не с его местоположением. Лешли не считал, что разрушение конкретной области мозга приведет к потере специфической способности. Он провозгласил два принципа – действия массы (активность мозга определяется функционированием этого органа как целого) и эквипотенциальности (каждая часть мозга способна выполнять любую задачу, а значит – нет никакой специализации){3}.

В процессе работы над диссертацией Лешли попал под влияние Джона Уотсона, директора лаборатории психологических исследований в Университете Джонса Хопкинса, и они стали хорошими друзьями. Откровенный сторонник бихевиоризма и теории чистой доски, Уотсон в 1930 году произнес свои знаменитые слова: “Дайте мне дюжину здоровых, нормально развитых младенцев и мой собственный особый мир, в котором я буду их растить, и я гарантирую, что, выбрав наугад ребенка, смогу сделать его по собственному усмотрению специалистом любого профиля – врачом, адвокатом, актером, торговцем и даже попрошайкой или вором – вне зависимости от его талантов, увлечений, наклонностей, способностей и расовой принадлежности его предков”{4}. Принципы действия массы и эквипотенциальности, выдвинутые Лешли, хорошо вписываются в рамки бихевиоризма.

Новые свидетельства в пользу концепции эквипотенциальности были связаны с именем одного из первых специалистов по нейробиологии развития – Пола Вейсса. Он тоже считал, что различные участки мозга не специализируются во время развития, и придумал известную фразу: “Функция предшествует форме”{5}. Она отражала результаты его экспериментов, в которых он пересаживал дополнительную конечность тритону, земноводному из семейства саламандр. Исследователя интересовал вопрос: будут ли нервные волокна прорастать к конечности специфично, или же они начнут прорастать случайным образом, но затем, в процессе использования новой лапы, произойдет приспособление и появятся ее специализированные нейроны? Он обнаружил, что пересаженные конечности тритона получают нужную иннервацию и способны обучаться движениям, которые полностью координированы и синхронизированы с движениями близлежащей конечности. Роджер Сперри, ученик Вейсса, а позже – мой наставник, резюмировал его принцип, получивший широкое признание, как “программу, согласно которой образование синаптических[1] связей совершенно неселективно, диффузно и универсально для нижележащих контактов”{6}. Итак, в то время считалось, что в нервной системе все сгодится, что нет никакой структурированной системы нейронов. Это началось с Лешли, это отстаивали бихевиористы, с этим соглашался величайший зоолог того времени.

Связи и специфичность нейронов

Однако Дональду Хеббу все это не казалось убедительным. Хотя он и учился вместе с Лешли, но был независим в своих суждениях и начал развивать собственную теорию. Он подозревал, что важно, как работают специфические нейронные связи, и отказался от принципов действия массы и эквипотенциальности. Ранее он уже отверг идеи великого русского физиолога Ивана Петровича Павлова, который считал мозг одной большой рефлекторной дугой. Хебб верил, что поведение определяется деятельностью мозга и что нельзя отделять психологию организма от его биологии. Сегодня это общепринятая идея, но тогда она казалась необычной. В отличие от бихевиористов, считавших, что мозг просто реагирует на стимулы, Хебб понял, что мозг никогда не прекращает работать, даже в отсутствие стимулов. Пользуясь ограниченными данными о функциях мозга, известными в 1940-е годы, он стремился построить модель, которая бы учитывала этот факт.

Хебб, опираясь на результаты собственных исследований, начал с предположений, как это может происходить. В 1949 году вышла его книга под названием “Организация поведения: нейропсихологическая теория” – предвестник гибели строгого бихевиоризма, знаменующий собой возврат к прежним представлениям об исключительной важности взаимосвязи нейронов. Он писал: “Если аксон клетки А находится достаточно близко, чтобы возбудить клетку Б, и многократно или постоянно участвует в ее активации, какие-то процессы роста или метаболические изменения происходят в одной или обеих клетках, так что эффективность возбуждения клеткой А клетки Б возрастает”{7}. В разговорах между собой нейробиологи формулируют это так: “Нейроны, которые возбуждаются вместе, связываются вместе”. Этот принцип лежит в основе предположений Хебба о процессах обучения и памяти. Он предложил называть группу нейронов, которые возбуждаются вместе, клеточной ассамблеей. Нейроны ассамблеи могут продолжать активироваться и по окончании запускающего события. Хебб считал, что такое устойчивое сохранение эффекта – разновидность памяти, и полагал, что мышление есть последовательная активация разных ассамблей. Иными словами, Хебб указал на ключевое значение взаимодействия между нейронами. Это и сегодня остается центральной темой исследований нейронауки.

Хебб сосредоточил свое внимание на нейронных сетях и на том, как они работают, чтобы запоминать информацию. Хотя он не занимался вопросом возникновения таких сетей, из его теории следует, что мышление влияет на развитие мозга. К тому же в своих ранних экспериментах на крысах, результаты которых были опубликованы в 1947 году, Хебб показал, что опыт может влиять на обучение{8}. Он понимал, что его теория будет пересматриваться по мере появления новых данных, касающихся механизмов работы мозга, но его настойчивость в объединении биологии с психологией наметила путь, который чуть более чем через десять лет привел к появлению новой области нейронауки.

Постепенно стало понятно, что, как только информация усваивается и помещается на хранение, конкретные участки мозга используют ее разными, особыми способами. Тем не менее оставалось неясным, как возникают нейронные сети, – одним словом, как развивается мозг.

Основополагающая работа, послужившая фундаментом для современной нейронауки и подчеркнувшая важность специфичности нейронов, была сделана учеником Пола Вейсса, Роджером Сперри. Его завораживал вопрос о том, как возникают взаимосвязи между нейронами. Он скептически относился к тому, как Вейсс объяснял рост нервов – будто в формировании нейронных сетей главную роль играет функциональная активность. В 1938 году, когда Сперри начал свои исследования, против доктрины о функциональной пластичности нервной системы выступили двое врачей из Медицинской школы Университета Джонса Хопкинса – Фрэнк Форд и Барнс Вудолл. Они рассказали о своих пациентах, у которых функции не восстанавливались долгие годы, несмотря на регенерацию нервной ткани{9}. Сперри решил исследовать функциональную пластичность у крыс, наблюдая, как изменение нервных связей влияет на поведение. Он менял местами нервные связи между мышцами-антагонистами – сгибателями и разгибателями – на задних лапах крысы, что меняло движения голеностопного сустава на прямо противоположные, и смотрел, могут ли животные научиться правильно пользоваться конечностями, как это предсказывала теория функциональной пластичности Вейсса. К своему удивлению, Сперри обнаружил, что крысы никогда не приспосабливались к этим изменениям, даже после многих часов тренировок{10}. Например, когда они карабкались по лестнице, их задние лапы поднимались в тот момент, когда должны были опускаться, и наоборот. Он предполагал, что сформируются новые нейронные сети и нормальные функции восстановятся, но оказалось, что моторные нейроны не взаимозаменяемы. Далее он исследовал сенсорную систему, перенося нервы кожи с одной конечности крысы на другую. И снова животные путались в ощущениях: когда ударяли током правую лапу, они поднимали левую; когда на правой лапе возникала ранка, они лизали левую{11}. Моторная и сенсорная системы не обладали пластичностью. Увы, Вейсс неудачно выбрал тритона в качестве модели человека в своих экспериментах, ведь регенерация нервной системы наблюдается лишь у низших позвоночных, например у рыб, лягушек и саламандр. Сперри вернулся к идее, что рост нервных волокон и его остановка регулируются хемотаксисом (движением клеток навстречу определенным химическим веществам). Эту гипотезу в начале XX века впервые выдвинул Сантьяго Рамон-и-Кахаль, один из величайших нейробиологов всех времен.

По мнению Сперри, рост нейронных сетей был результатом высокоспецифичного генетического кодирования нейронных контактов. Он проделал десятки хитроумных экспериментов, чтобы это продемонстрировать. В одном из них он хирургическим путем просто перевернул лягушке глаз вверх ногами. После этого, когда ей показывали муху, ее язык двигался в противоположном направлении. И даже спустя несколько месяцев после операции лягушка продолжала искать муху не там, где нужно. Система обладала специализацией: она не была пластичной и не могла адаптироваться. Затем Сперри взял золотую рыбку и удалил у нее часть сетчатки. Когда нервы регенерировали, он наблюдал, где они будут расти в том участке среднего мозга, куда поступают зрительные импульсы, – в оптическом тектуме. Оказалось, нервы росли очень специфично. Если они росли в задней части сетчатки, то прорастали к передней части тектума, и наоборот. Иными словами, нервные волокна тянулись к особому месту, независимо от их начального положения. Сперри заключил следующее: “Когда бы система нервных волокон ни была разъединена, перемещена или просто уничтожена грубым хирургическим вмешательством, ее повторное отрастание всегда приводит к упорядоченному восстановлению функции, даже при условиях, исключающих адаптацию путем повторного обучения”{12}. Несколько позднее, в 1960-х годах, когда ученые получили возможность непосредственно наблюдать и фотографировать рост нервов, они увидели, что кончик растущего нерва постоянно выпускает микрофиламенты, или щупальца, которые зондируют все направления и, вытягиваясь и сокращаясь, определяют нужное направление роста нерва{13}. Сперри утверждал, что химические факторы обусловливают, какие микрофиламенты будут доминировать и задавать направление роста. Согласно его модели, чтобы образовать нужные связи в мозге, то есть найти путь в конкретное место, отростки нейронов ориентируются за счет химического градиента и выпускают маленькие филоподии (тонкие цитоплазматические выросты из клетки), благодаря которым “смотрят”, куда расти (прощупывают почву).

Назад Дальше