Ремарка в сторону: как получить зачетные баллы на моем экзамене по математическому анализу
Методы математического анализа во многом похожи на линейную регрессию: они носят сугубо механический характер, с ними вполне может справиться ваш калькулятор, а невнимательное применение этих методов сопряжено с большими опасностями. На экзамене по матану вам могут предложить рассчитать вес воды, оставшейся в кувшине после того, как вы проделаете в нем отверстие и позволите воде вытекать определенным потоком на протяжении определенного промежутка времени, и тому подобное. Решая задачу такого рода в условиях нехватки времени, вполне можно сделать арифметические ошибки. Порой это приводит к тому, что тот или иной студент получает нелепый результат, например что вес воды в кувшине составляет −4 грамма.
Если студент получает результат «−4 грамма» и в отчаянии торопливо пишет «Я где-то напортачил, но не могу найти ошибку», я даю такому студенту половину зачетных баллов за экзамен.
Если же студент просто пишет «−4 грамма» в конце страницы и обводит этот результат кружком, он получает ноль зачетных баллов – даже если вся процедура вывода этого результата была правильной, за исключением того, что где-то посередине страницы единственная цифра оказалась не на своем месте.
Вычисление интеграла или выполнение линейной регрессии – это задачи, которые достаточно эффективно может решать компьютер. Понимание того, имеет ли полученный результат смысл (или принятие решения, стоит ли вообще применять соответствующий метод в данном случае), требует направляющей человеческой руки. Когда мы преподаем математику, предполагается, что нужно объяснить учащимся, как стать таким проводником. Курс математики, который не делает этого, по существу учит студента выполнять функции дефектной версии Microsoft Excel.
Будем откровенны: именно это и происходит на большинстве наших математических курсов. Сокращенная история споров (сама представляющая собой предмет споров) состоит в том, что преподавание математики детям вот уже несколько десятилетий является ареной так называемых математических войн. По одну сторону этого противостояния находятся учителя, которые предпочитают делать акцент на запоминании, беглости, традиционных алгоритмах и точных ответах, а по другую сторону – учителя, считающие, что в основе преподавания математики должно лежать выяснение смысла, развитие способов мышления, обучение методом направляемых открытий и аппроксимация. Первый подход называют порой традиционным, а второй – реформистским, хотя предположительно нетрадиционный подход к обучению посредством открытий используется в той или иной форме вот уже десятки лет, а действительно ли так называемые реформы можно считать реформами – это и есть предмет споров. Споров весьма ожесточенных. Во время званого математического ужина вполне прилично обсуждать политические или религиозные вопросы, но начните спорить о математической педагогике – и это грозит закончиться тем, что кто-то из сторонников либо традиционного, либо реформистского подхода обидится и хлопнет дверью.
Я не причисляю себя ни к одному из этих лагерей. Мне не по пути с теми реформистами, которые хотят отказаться от заучивания таблицы умножения наизусть. В процессе серьезных математических размышлений вам неизбежно понадобится умножить 6 на 8, но, если каждый раз для этого доставать калькулятор, вам не удастся достичь того состояния интеллектуальной спонтанности, которая требуется для процесса размышлений. Нельзя написать сонет, выискивая в словаре значение каждого слова.
Некоторые сторонники реформистского подхода заявляют, что классические алгоритмы (например, «сложить два двузначных числа, расположив одно над другим столбиком и в случае необходимости выполнив перенос») следует исключить из учебного курса, чтобы они не мешали ученикам самостоятельно обнаруживать свойства математических объектов[88].
С одной стороны, я считаю эту мысль ужасной: такие алгоритмы представляют собой полезные инструменты, над разработкой которых кто-то упорно работал, и нет никаких оснований начинать все с нуля.
С другой стороны, мне кажется, что в современном мире вполне можно отказаться от некоторых алгоритмов. Например, нам нет необходимости учить студентов извлекать квадратные корни вручную или в уме (хотя второй из этих двух навыков, говорю вам по собственному опыту, можно использовать в качестве замечательного фокуса на вечеринке в кругу яйцеголовых). Калькулятор – не менее полезный инструмент, над созданием которого кто-то упорно трудился; мы также должны использовать этот инструмент, когда того требует ситуация! Меня даже не интересует, могут ли мои студенты разделить 430 на 12 посредством деления столбиком. Меня на самом деле
Сноски
1
Russell Bertrand. The Study of Mathematics // Mysticism and Logic: And Other Essays. Longman, 1919. P. 60. Прим. М. Г.
Здесь и далее все постраничные сноски даются в квадратных скобках. Примечания, написанные научным редактором, даны с пометой М. Г.; примечания, сделанные редактором, – с пометой ред.; авторские примечания – без какой-либо пометы.
2
В объяснении правил судоку в английской версии газеты Metro, в частности, сказано: «Хотя это игра с числами, она не требует математических навыков – только понимания логики и терпения». Прим. М. Г.
3
Биографические материалы об Абрахаме Вальде взяты из работы: Oscar Morgenstern. Abraham Wald, 1902–1950 // Econometrica, 1951, Oct., 19, no 4, p. 361–367.
4
Исторические данные о SRG взяты главным образом из следующего источника: W. Allen Wallis. The Statistical Research Group, 1942–1945 // Journal of the American Statistical Association, 1980, June, 75, no 370, p. 320–330.
5
Отец Пола [Пол Вулфовиц – американский политик, президент Всемирного банка (2005–2007). Прим. М. Г.].
6
W. Allen Wallis. The Statistical Research Group…, p. 322.
7
W. Allen Wallis. The Statistical Research Group…, p. 322.
8
Сэвидж был почти слепым и видел только уголком одного глаза. Как-то, чтобы доказать какую-то свою идею об освоении Арктики, он целых полгода питался одним пеммиканом [мясной концентрат; пища индейцев Северной Америки и основной мясной продукт в арктических и антарктических экспедициях начала XX века. Прим. М. Г.]. Просто подумал, что об этом стоит упомянуть.
9
W. Allen Wallis. The Statistical Research Group…, p. 329.
10
Я узнал о Вальде и проблеме крепкой авиационной брони из книги Говарда Вейнера: Howard Wainer. Uneducated Guesses: Using Evidence to Uncover Misguided Education Policies. NJ: Princeton University Press, 2011. Автор использует идеи Вальда для анализа таких же сложных и неполных статистических данных, полученных в ходе изучения сферы образования.
11
См.:Marc Mangel, Francisco J. Samaniego. Abraham Wald’s Work on Aircraft Survivability // Journal of the American Statistical Association, 1984, June, 79, no. 386, p. 259–267.
12
Отдельный интересный вопрос, как измерять качество питания в процентах. Прим. М. Г.
13
Физик Ричард Фейнман утверждал, что математики не ставят таких вопросов: «…Я всегда выигрывал. Если я угадывал – здорово. Если не угадывал, то всегда мог найти в их упрощении что-то, что они упускали из виду» (Р. Ф. Фейнман. Вы, конечно, шутите, мистер Фейнман! / Пер. с англ. Н. А. Зубченко, О. Л. Тиходеевой, М. Шифмана. М.: НИЦ «Регулярная и хаотическая динамика», 2001. С. 39). Прим. М. Г.
14
См.:Jacob Wolfowitz. Abraham Wald, 1902–1950 // Annals of Mathematical Statistics, 1952, Mar. 23, no. 1, p. 1–13.
15
Например, истории о том, что дельфины выталкивают тонущих людей на берег. На самом деле дельфины поддерживают тонущего на плаву, подталкивая в произвольных направлениях (что естественно для водных млекопитающих), но только выжившие – те, кого подтолкнули к берегу, – смогли рассказать о встрече с ними. Прим. М. Г.
16
Взаимный фонд, или фонд взаимных инвестиций (mutual fund), – портфель акций, отобранных и приобретенных профессиональными финансистами на вложения большого числа мелких вкладчиков. Прим. М. Г.
17
Справедливости ради следует отметить, что сам индекс S&P 500 показал еще более высокий рост – 212,5 % за тот же период.
18
Amy L. Barrett, Brent R. Brodeski. Survivor Bias and Improper Measurement: How the Mutual Fund Industry Inflates Actively Managed Fund Performance (http://www.etf.com/docs/sbiasstudy.pdf).
19
Martin Rohleder, Hendrik Scholz, Marco Wilkens. Survivorship Bias and Mutual Fund Performance: Relevance, Significance, and Methodical Differences // Review of Finance, 2011, vol. 15, no 2, p. 441–474 – см. таблицы. Мы перевели месячную избыточную доходность в годовую избыточную доходность, поэтому цифры в нашем тексте не совпадают с данными, приведенными в статье.
20
Abraham Wald. Method of Estimating Plane Vulnerability Based on Damage of Survivors. Alexandria, VA: Center for Naval Analyses, repr., 1980, July, CRC 432.
21
Железный человек по имени Энтони Эдвард, или Тони Старк, – герой комиксов. Прим. М. Г.
22
Парафраз известной формулировки Карла фон Клаузевица: «Война есть не что иное, как продолжение государственной политики иными средствами» (К. Клаузевиц. О войне / Пер. А. Рачинского. М.: Логос; Наука, б.г. [1998]. С. 27). Прим. ред.
23
Владимир Игоревич Арнольд приводил следующие слова Годфри Харди (в двух вариантах – и оба раза с негодованием): 1) «Общая черта королевы и математики – полная бесполезность обеих» (В. Арнольд. Переориентация науки на «прикладные исследования» приведет к снижению интеллектуального уровня страны // Троицкий вариант – Наука. 2008. № 19. http://trv-science.ru/2008/12/23/18/); 2) «Теория чисел является королевой математики вследствие своей полной бесполезности» (В. Арнольд. Нужна ли в школе математика? Доклад на Всероссийской конференции «Математика и общество. Математическое образование на рубеже веков» в Дубне 21 сентября 2000 года // Скепсис. http://scepsis.net/library/id_649.html). Харди написал это в начале прошлого века. Сейчас всякий раз, когда вы пользуетесь кредитной карточкой, вы (точнее, банк) используете алгоритмы шифрования транзакций, основанные на результатах теории чисел. Прим. М. Г.
24
См.: J. von Neumann. Collected Works. Volume I: Logic, Theory of Sets and Quantum Mechanics. New York; London; Oxford; Paris: Pergamon Press, 1961. Pp. 1–9. [Приведенная далее цитата дается в пер. Ю. А. Данилова, см.: Ю. А. Данилов. Математик фон Нейман и его «Математик» // Природа. 1983. № 2. С. 86–87. Прим. перев.]
25
В настоящее время специалисты называют теорему Ферма теоремой Уайлса, поскольку Эндрю Уайлс доказал ее (не без помощи Ричарда Тейлора), тогда как Ферма не сделал этого. Однако, по всей вероятности, традиционное название неискоренимо и вряд ли будет когда-нибудь вытеснено.
26
Ее доказал Григорий Перельман. Прим. М. Г.
27
Это гипотеза. Прим. М. Г.
28
Что касается гипотезы Римана, мне больше всего нравятся книги: John Derbyshire. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Plume; Reprint edition, 2004 [Дж. Дербишир. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. М.: Астрель; Corpus, 2010. –Прим. М. Г.];Marcus du Sautoy. The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. New York: Harper Perennial; Reprint edition, 2012. О теореме Гёделя см.:Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Basic Books, 1999 [Д. Хофштадтер. Гёдель, Эшер, Бах. Эта бесконечная гирлянда. Самара: Бахрах-М, 2001. –Прим. М. Г.]. По правде сказать, теорема Гёделя упоминается в этой книге вскользь, как один из элементов размышлений о самоотносимости в искусстве, музыке и логике.
29
Правда, в двадцать с лишним лет я все-таки потратил какое-то время на нешуточные размышления, не стать ли мне настоящим писателем. Я даже написал и опубликовал вполне глубокомысленное литературное произведение – роман The Grasshopper King («Король кузнечиков»). Но пока я работал над ним, то обнаружил, что по полдня слоняюсь в тоске, мечтая лишь об одном: решать математические задачи.
30
Ю. А. Данилов. Математик фон Нейман и его «Математик». С. 86. Прим. М. Г.
31
Daniel J. Mitchell. Why Is Obama Trying to Make America More Like Sweden when Swedes Are Trying to Be Less Like Sweden? // Cato Institute, 2010, March 16 (www.cato.org/blog/why-obama-trying-make-america-more-sweden-when-swedes-are-trying-beless-sweden – просмотрено 13.01.2014).
32
Под «шведскостью» подразумевается вовсе не такая характерная особенность страны, как «всегда имеющаяся в наличии селедка под десятками разнообразных маринадов», а «уровень социального обеспечения и налогообложения» – состояние, к которому несомненно должны стремиться все без исключения государства.
33
Точнее, для этих и ряда последующих рассуждений автора существенна разница между монотонностью и немонотонностью. Прим. М. Г.
34
Или, если хотите, не линия, а линейный сегмент. Но я не собираюсь из этих терминологических расхождений раздувать целую проблему.
35
Horace. Satires 1.1.106 / Trans. Basil Dufallo // Satis/Satura: Reconsidering the «Programmatic Intent» of Horace’s Satires 1.1. Classical World, 2000, vol. 93, no 6, p. 579–590.
36
Гораций. Сатиры, II, 1, 106–107 / Пер. М. Дмитриева // Квинт Гораций Флакк. Оды, эподы, сатиры, послания. М.: Художественная литература, 1970. С. 248. Прим. ред.
37
Аристотель. Никомахова этика, кн. II, гл. 2, стр. 1104a / Пер. Н. Брагинской // Аристотель. Сочинения в четырех томах. М.: Мысль, 1983. Т. 4. С. 80. Прим. ред.
38
Фильм Джона Хьюза (1984), в котором роль преподавателя экономики сыграл известный экономический комментатор Бен Стайн. Прим. М. Г.
39
Эту часть истории Лаффер отрицает. По его словам, в ресторане были превосходные тканевые салфетки, которые он ни за что не стал бы портить экономическими закорючками.
40
Лаффер всегда настаивал, что не он придумал кривую своего имени; когда-то эту идею понял и описал Джон Кейнс, а базовый принцип сформулировал еще в XIV веке историк Ибн Хальдун.
41
Из книги «Физики шутят»: «Дирак любил потеоретизировать на самые различные темы. Однажды он высказал предположение, что существует оптимальное расстояние, на котором женское лицо выглядит привлекательнее всего; поскольку в двух предельных случаях – на нулевом и бесконечном расстоянии – “привлекательность обращается в нуль” (ничего не видно), то между этими пределами, естественно, должен существовать максимум» (Физики шутят / Составители-переводчики: Ю. Конобеев, В. Павлинчук, Н. Работнов, В. Турчин. М.: Мир, 1993). Прим. М. Г.
42
Примерно от 500 тысяч до 1 миллиона долларов в год в современном исчислении.
43
Похоже, я единственный, кто о ней вспомнил.
44
Цит. по: JonathanChait. Prophet Motive: Jude Wanniski, the GOP’s odd man in // New Republic, 1997, March 31.
45
Hal R. Varian. What Use Is Economic Theory? [Working Paper] University of California at Berkeley, 1989, August (http://people.ischool.berkeley.edu/~hal/Papers/theory.pdf – просмотрено 13.01.2014).
46
Американский политик Джек Френч Кемп в 1988 году проиграл на республиканских праймериз Бушу-ст., в 1996 году был кандидатом в вице-президенты (с Бобом Доулом). Прим. М. Г.
47
David Stockman. The Triumph of Politics: How the Reagan Revolution Failed. New York: Harper & Row, 1986, p. 10.