Физика? Нет ничего проще! Возвращение физики - Фролов Александр Александрович 5 стр.


И уж подавно научной работой является неустанная проверка научных результатов, тех, которые надежно упакованы и лежат на складе науки. Речь идет, в частности, о границах применимости научных моделей явлений и, следовательно, о границах их непоколебимой адекватности. Кропотливая научная работа в том смысле, о котором мы так подробно говорили выше, позволяет выявить эти границы для того, чтобы наука могла шагнуть за них дальше, расширяя и углубляя наши представления о мире. Выявить – это научная работа, осознать и шагнуть вперед – наука. Честь одного и честь другого – равновелики. Но первое – это искусство умения, терпения и настойчивости, чему научить нельзя. Второе – проявление понимания, и научить ему можно.

2.3. Разделяй и властвуй

Итак, наука и научная работа – принципиально разные феномены. Но неразрывно объединенные научно-познавательной деятельностью человека. Проблема заключается в том, что общество на уровне коллективного бессознательного [10] «догадывается» насчет необходимости научности представлений о мире для своего выживания, то есть именно такие представления являются жизненно важными архетипами. Однако эти две грани неразрывного единства противоположны в сущности своей. Одна из них, наука, является результатом коллективной познавательной деятельности человечества. Поэтому она отличается надежностью, обобщенным характером понимания сущности наблюдаемых явлений, общедоступностью и принципиальной возможностью взаимопонимания людей в описании этих явлений. Последнее, в свою очередь, делает возможной трансляцию научных знаний, то есть, в конечном счете, науки в целом.

В отличие от этого научная работа, как было показано выше, является сугубо индивидуально-личностной формой деятельности. К тому же в отдельных своих аспектах – не всегда познавательной. Несомненно, опыт научной работы чрезвычайно ценен, но он в большинстве случаев связан с исследованием лишь конкретных явлений. Требуется репродуктивное ознакомление с большим объемом прецедентов или с большим числом деталей конкретного прецедента научной работы для того, чтобы соответствующий ее прием сам стал элементом научного знания.

Примерами в физике могут служить описания исследований Шарля Огюстена Кулона и Генри Кавендиша. Для измерения зарядов взаимодействующих тел Кулону пришлось сделать множество совершенно одинаковых сферических тел из сердцевины побегов бузины. Одинаковых – это значит заведомо имеющих одинаковые электрические свойства. Современному исследователю страшно даже подумать о потребовавшемся для этого адском труде методами того времени. Казалось бы, результаты этого труда были нужны только для исследования электростатического взаимодействия тел. Однако аналогичную работу пришлось, в частности, проделать Кавендишу с металлическими сферами при исследовании явления гравитации. Только здесь речь шла о гравитационных свойствах тел. На первый взгляд, эти фрагменты научной работы представляются разрозненными и чисто технологическими. Но, в сочетании с прецедентами других подобных опытов, они приводят к научному пониманию процедуры введения в физике меры определенного свойства тела через проявление этого свойства во взаимодействиях совершенно одинаковых тел.

В 1784 году Кулон использовал крутильные весы при исследовании электростатического взаимодействия тел для того, чтобы исключить в этом исследовании влияние притяжения тел Землей. Неясно, не сделал ли это раньше Кавендиш. Но вот в 1798 году уж точно Кавендиш воспользовался такими весами для измерения средней плотности Земли. И теперь крутильные весы прочно вошли в арсенал экспериментальной физики. Науке безразлично, при помощи каких весов получен удовлетворяющий ее требованиям результат. Но найденное в результате научной работы удачное аппаратурное решение привело к созданию достаточно универсального прибора, который может быть использован в широком круге физических экспериментов. Например, при исследовании Петром Леонидовичем Капицей сверхтекучести жидкого гелия [3].

Таким образом, результаты собственно научной работы, будучи освоенными и систематизированными, становятся устойчивой составляющей инструментария научного подхода к исследованию явлений. Это, как ни парадоксально, создает принципиальную возможность в цивилизационно необходимой трансляции такого подхода выделять из нетранслируемого множества прецедентов научной работы инструментально оформившиеся философские и аппаратурные методы, ставшие неотъемлемой частью научно-познавательной деятельности, обеспечивающие обоснование смысла и надежности транслируемых научных результатов. И потому являющиеся частью научного знания, частью науки.

Но в таком случае передача деталей указанных методов должна быть строгой и достоверной, иначе репродуктивно транслируемые научные результаты будут восприниматься как необоснованные и потому не подлежащие присвоению и усвоению. Негативным примером могут служить нелепые иллюстрации экспериментов в современных школьных учебниках физики.

Соотношение науки и научной работы может быть проиллюстрировано следующей схемой.


Рис. 2.1. Схема, иллюстрирующая взаимосвязь науки и научной работы


Итак, подведем итоги.

1. Научное знание отчуждено от своих создателей, неэмоционально и безлико. Именно поэтому возможна его трансляция, порождающая однозначное взаимопонимание субъектов познавательной деятельности и возможность практического приложения научного знания к реализации социально значимых процессов.

2. Научная работа является глубоко индивидуально-личностной и потому принципиально субъективно окрашенной формой познавательной деятельности. В связи с этим ее сущность и детали, в том числе – мотивационный аспект, не могут быть переданы в процессе обучения. Более того, такие попытки могут привести к психологическому блокированию у обучающихся инициативных и творческих подходов к научной работе.

3. Разработанные в процессе научно-познавательной деятельности, инструментально оформившиеся в результате научного обобщения прецедентов философские и аппаратурные методы, приемы и способы могут сами стать элементами научного знания и, соответственно, предметами изучения и обучения.

4. Обобщенная человечеством вплоть до отчуждения от человеческого и, тем более, от конкретных проявлений конкретного человека наука с ее научными результатами и глубоко человеческая и человечная научная работа совершенно равноценны и равнопочетны в деятельностных проявлениях. Они неразрывно связаны, и эта связь может быть реализована в деятельности как одного человека, так и разных людей, в том числе – их групп.

Возвращение обществу физики как элемента общечеловеческой культуры возможно только путем трансляции этому обществу ее научной сущности. Ввиду принципиальной простоты физических моделей именно физика в системе образования и вообще в представлениях людей является важнейшим носителем структуры научного мышления и научно-познавательной деятельности. Поэтому, рассмотрев далее природу и содержание этой структуры, мы перейдем к рассмотрению ее реализации именно в физике.

Литература к главе 2

1. Бартон, В. Рост кристаллов и равновесная структура их поверхностей [Текст] / В. Бартон, Н. Кабрера, Ф. Франк // Элементарные процессы роста кристаллов. – М.: Мир, 1959. – С. 11—109.

2. Илларионов, С. В. Теория познания и философия науки [Текст] монография / С. В. Илларионов. – М.: «Российская политическая энциклопедия» (РОССПЭН), 2007. – 535 с.

3. Капица, П. Л. Эксперимент, теория, практика [Текст] / П. Л. Капица. – М.: Наука, Главная редакция физико-математической литературы. – 1981. – 496 с.

4. Маклаков, А. Г. Общая психология [Текст]. Учебник / А. Г. Маклаков. – СПб.: Издательство «Питер», 2001. – 592 с.

5. Новоженов, Ю. И. Филетическая эволюция человека [Текст] / Ю. И. Новоженов. – Екатеринбург, 2005. – 112 с.

6. Фролов, А. А. Технология интеллектуального образования [Текст] монография / А. А. Фролов. – Екатеринбург: Издательство «Раритет», 2015. – 180 с.

7. Фролов, А. А. Огранение кристаллов силицидов и германидов при выращивании из расплава [Текст] / А. А. Фролов // Рост кристаллов, том 17. – М.: Наука, 1989. С. 216—237.

8. Фролов, А. А. Соотношение алгоритмизации и эвристики при формировании и трансляции научного знания [Текст] / А. А. Фролов, Ю. Н. Фролова // Образование и наука. – 2007. – №5 (47). – С. 11—21.

9. Фролов, А. А. Язык, закон, задача в курсе физики средней школы [Текст]: учебно-методическое пособие для учителей и учащихся старших классов / А. А. Фролов. – Екатеринбург: Банк культурной информации, 2003. – 96 с.

10. Юнг, К. Г. Архетип и символ [Текст] / К. Г. Юнг. – М.: Ренессанс, 1991. – 304 с.

Глава 3. Алгоритмическая структура научного мышления

На стенах школьных кабинетов физики и вузовских аудиторий висят портреты людей, чаще всего пожилых, в буклях или стоячих воротничках. Ну, иногда – в тогах. Они сурово взирают на обучающихся. Они – великие. Что-то там открыли, и теперь остальные почему-то должны это учить. Прямо-таки наизусть, потому что остальным не дано открывать и быть великими. Эта избранность всегда меня смущала. Что же такое было в головах у великих, если они с такой легкостью открывали невидимые дверцы и доставали оттуда величины, законы и решения? К университету непонимание стало нестерпимым. Появились первые подозрения, что не в одной физике чудят такие загадочные личности. И что, наверное, есть что-то общее в ходе их мыслей. Тем более, что некоторые из «открывателей» много чего понатворили в разных отраслях науки. Похоже, вся наука устроена определенным образом и имеет структуру, отраженную в способе мышления. Или какой-то определенный способ мышления отражается в структуре научного знания и метода его формирования. Но тогда возникает крамольная мысль: значит, эту структуру можно выяснить и, пользуясь ею, совершать научные подвиги не хуже великих. Вот и займемся выяснением.

Во второй главе книги мы пришли к тому, что наукой называется система постоянно развивающихся знаний о реальном окружающем мире и внутреннем мире человека. Для того, чтобы знания постоянно развивались, необходимо, чтобы и они сами, и способы их добывания, обработки и практического применения становились достоянием всего общества, то есть всей человеческой популяции. Здесь необходимо напомнить, что знания есть следствие познавательной деятельности человека именно в популяционном смысле, на популяционном уровне. В какой-то мере аналогом этой ситуации была история развития хоккея в нашей стране. В хоккей играли все – от мала до велика, во дворах и на стадионах – кто с фирменной клюшкой, кто с выломанной в сквере изогнутой палкой. И сборная страны стала знаменитой, великой, непревзойденной «Красной машиной». Сейчас же играют только избранные и только в приличных секциях – мастера есть, а машины нет. Одни велосипеды. Уровень задан, а развивать некому. Вот и ждите, Демокрит с Левкиппом, прихода Ломоносова… сотни лет. Знание распределено в обществе, рабовладельческое оно или коммунистическое. Только характер распределения разный, а природа – одна.

Следовательно, перед обществом возникли как минимум две задачи. Во-первых – решить, что именно нужно транслировать на все человечество в первую очередь. Человечество решает эту задачу на уровне коллективного бессознательного, путем больших и малых проб и ошибок, совершаемых отдельными людьми или какими-то группировками. Чем мельче становятся со временем пробы и ошибки, тем точнее мы узнаем, что транслировать. Хотя узнаем порою с опозданием и очень дорогой ценой. Во-вторых – обществу необходимо решить, какими средствами и способами знание транслировать. С тем, чтобы обеспечить результат популяционного масштаба.

В решении этих задач чрезвычайно важную роль играет наличие у науки уже упомянутой структуры, отражающей структуру научно-познавательного мышления и вообще научно-познавательной деятельности. Чем четче проявляется структурированность знания, тем более оно готово к трансляции и тем приоритетнее для нее. Поэтому для обсуждения физики как отрасли науки, в которой наиболее ярко проявляются простота и красота научного подхода к видению мира, необходимо представить и понять исторически сложившуюся последовательность этапов такой деятельности. То есть как она складывалась, почему сложилась в современном виде и что это за вид. Конечно, на математическом или, по крайней мере, математизированном уровне понимания. Так уж надежнее и технологически воспроизводимее. В сущности, основой любой адекватной трансляции может быть только математика того или иного уровня сложности. Здесь имеется в виду принцип, сформулированный мне в ходе коррекционных занятий одним учащимся шестого класса: «Математика – это язык, язык – это математика». С этим трудно не согласиться. Однако надо отметить, что если первое утверждение, дословно повторяющее высказанное Ф. Бэконом, несколько метафорично, то второе, обратное, надо понимать буквально. Возникновение знаковых систем в процессе построения движений [2] в принципе математично, и это возникновение, по-видимому, можно рассматривать как один из первичных этапов собственно возникновения и развития математики. Вне зависимости от того, осознаем мы именно эти, первичные, этапы или не осознаем. Вырастающие из этого математические описания явлений разного уровня сложности могут приобретать различные конечные формы. В том числе – речевые. Необходимо понимать, что при серьезном научном анализе описания явлений, которые мы относим, например, к «гуманитарным», требуют математического обеспечения, несравнимо более сложного, нежели имеющегося, например, у физика-теоретика.

Адекватная трансляция чего угодно вне языка как знакового средства общения между людьми невозможна. Таким образом, транслировать надо, в первую очередь, структуру научно-познавательной деятельности, причем на математически обеспеченном процессуальном уровне.

С другой стороны, трансляция научного знания и средств его формирования имеет целью развитие у отдельных членов общества научно-познавательного мышления. И, как следствие, на статистическом уровне – становление у общества в целом научно-познавательного подхода к восприятию мира и его преобразованию. Это означает, что нам необходимо выявить конкретный вид современного представления о структуре процесса научно-познавательного мышления и понять динамику этого процесса. Корректное воспроизведение такой динамики должно обеспечить столь важную для нас трансляцию процессуальной структуры научно-познавательной деятельности. Следовательно, обеспечить обучение субъектов познавательной деятельности самостоятельному получению научного знания о мире, прежде всего – в области простейших модельных представлений о нем. То есть, математических и строящихся на их основе простейших представлений любых научных дисциплин. И, после математики, в первую очередь – физики как наиболее наглядной в отношении модельных представлений исследуемых явлений. В связи с этим необходимо понять, «как думает» физика и как должны думать физики, чтобы быть физиками.

Назад Дальше