Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной - Попов Сергей Борисович 2 стр.


Солнечная корона хорошо видна во время затмения. Она визуально прослеживается на несколько солнечных радиусов и характеризуется очень низкой плотностью (поэтому ее невозможно увидеть на фоне дневного неба), но очень высокой температурой. Вид короны сильно зависит от солнечной активности в данный момент. На больших расстояниях корона постепенно переходит в солнечный ветер.

Стабильность полной светимости Солнца связана со стабильностью его внутренней структуры.

Несмотря на различные проявления поверхностной активности, полная светимость Солнца, в основном приходящаяся на оптический диапазон, крайне стабильна. Это связано со стабильностью внутренней структуры, которая поддерживается за счет равновесия сил гравитации и сил давления (газа и излучения). Однако светимость за пределами видимого диапазона (в радиодиапазоне, ультрафиолете, рентгене, гамма-лучах) может существенно изменяться как в коротком временном масштабе (вспышки), так и в длительном (11-летний цикл активности, а также более долгопериодические изменения). Активность Солнца связана с процессами в самых внешних (конвективных) слоях, а не с основным источником энергии – термоядерными реакциями в ядре. Однако даже такие небольшие вариации в поведении Солнца могут заметно влиять на земной климат.

Солнце состоит в основном из водорода (более 70 % по массе) и гелия. Лишь менее 2 % приходится на более тяжелые элементы. Распределение элементов по радиусу не является равномерным. Во-первых, в ядре происходит синтез гелия, а отсутствие конвекции во внутренних слоях исключает заметное перемешивание вещества и вынос продуктов синтеза во внешние слои. Во-вторых, внутренние слои обогащаются тяжелыми элементами, которые опускаются из внешних слоев.

Солнце более чем на 98 % состоит из водорода и гелия.

По этим причинам фотосферный состав не отражает точного содержания элементов в Солнце. Разумеется, усредненный химический состав Солнца медленно меняется со временем из-за превращения водорода в гелий в ядре.

Солнце образовалось около 4,6 млрд лет назад. Еще чуть более 5 млрд лет Солнце будет оставаться на Главной последовательности. В течение этого времени светимость и радиус будут немного расти, но структура Солнца останется неизменной до ухода с Главной последовательности. Затем, когда запасы водорода в ядре будут исчерпаны, структура и основные параметры (светимость, масса, температура поверхности) нашей звезды начнут сильно меняться.

1.2. Реакции в Солнце. Нейтрино

Источником энергии Солнца являются термоядерные реакции превращения водорода в гелий. Благодаря регистрации выделяющихся при этом нейтрино мы достаточно точно знаем характеристики каждой из этих реакций.

Источником энергии Солнца являются термоядерные реакции синтеза гелия из водорода.

Ядро обычного гелия (

4

1

Основной канал называют pp-цепочкой, или pp-циклом, на первом шаге которого в реакцию вступают два протона (p). Однако даже эта реакция идет в недрах Солнца в двух вариантах. Основной (99,76 % случаев) состоит во взаимодействии двух протонов, в результате чего образуется дейтерий (один из протонов превращается в нейтрон), рождаются позитрон и электронное нейтрино. Эти нейтрино имеют низкую энергию, поэтому их удалось детально исследовать лишь недавно, в 2014 г., на установке Borexino в Италии.

В другом варианте (0,24 %) в реакции участвует третья частица – электрон. В этой так называемой pep-реакции также образуются дейтерий и электронное нейтрино (pep-нейтрино). Эти более редкие pep-нейтрино, обнаруженные с помощью Borexino в 2012 г., имеют несколько большую энергию, чем те, которые образуются в pp-цикле.

На следующем этапе дейтерий взаимодействует с еще одним протоном. Образуется изотоп гелия

3

4

Более 98 % энергии рождается в реакциях протон-протонного (pp) цикла.

Но чаще идут другие реакции. В 84,6 % случаев два ядра гелия-3 взаимодействуют друг с другом, порождая ядро 4He и два протона. В оставшихся 15,4 % начинается другая цепочка реакций: гелий-3 взаимодействует с гелием-4, образуя ядро бериллия-7 (

7

7

8



Среди всех реакций, идущих в ядре Солнца, в пяти испускается электронное нейтрино. Антинейтрино или нейтрино другого типа в pp-цикле не возникают. Проще всего зарегистрировать борные нейтрино, поскольку они имеют высокую энергию и их достаточно много. Сложнее всего – нейтрино от первой (pp) реакции из-за их низкой энергии.

Такие же реакции идут во всех звездах того же типа, что и Солнце, однако из-за разной зависимости скорости реакций от температуры вклад различных каналов у звезд разной массы отличается.

Протон-протонный цикл вносит основной (более 98 %) вклад в энергетику Солнца. Однако есть еще одна цепочка реакций, также ведущая к синтезу гелия из водорода. В Солнце она отвечает менее чем за 2 % энерговыделения, но в более горячих (массивных) звездах этот вариант, называемый CNO-циклом, становится доминирующим.

Свое название CNO-цикл получил благодаря углероду (C), азоту (N) и кислороду (O). Однако эти элементы в реакциях CNO-цикла не расходуются и не синтезируются: на входе мы имеем четыре протона, а на выходе – альфа-частицу (плюс, конечно, нейтрино и энергию). Можно сказать, что углерод выступает в роли катализатора, а азот и кислород принимают участие в промежуточных этапах синтеза.

CNO-цикл отвечает менее чем за 2 % энергетики Солнца, но становится доминирующим в более массивных звездах.

Цикл начинается с того, что обычный углерод-12 (

12

13

В результате реакций часть энергии уносится электронными нейтрино, регистрируемыми на Земле.

Углерод-13 снова взаимодействует с протоном с образованием азота-14 и фотона. Азот-14 взаимодействует с протоном, порождая кислород-15 и фотон. В ядре

15

12

4

У CNO-цикла есть еще несколько вариантов. Один из них идет только при высокой температуре и для Солнца совсем не актуален. Второй все-таки дает ничтожный вклад в энергетику Солнца. При взаимодействии азота-15 с протоном в редких случаях возникает не углерод-12 и альфа-частица, а кислород-16. Кислород захватывает еще один протон, превращаясь во фтор-17. В результате бета-распада фтор-17 превращается в кислород-17 с испусканием нейтрино и рождением позитронов. Кислород-17 снова взаимодействует с протоном, а итогом реакции становятся азот-14 и альфа-частица. Но это еще не конец, ведь цепочка началась с азота-15, который необходимо получить для замыкания цикла.

14

15

Нейтрино обладают небольшой (но не нулевой!) массой.

Как видно, в ходе CNO-цикла также рождаются электронные нейтрино, которые, как и нейтрино от pp-реакций, удалось зарегистрировать в подземных нейтринных лабораториях.

Теоретики разработали основные цепочки pp- и CNO-циклов в конце 1930-х гг. В 1946 г. Бруно Понтекорво (Bruno Pontecorvo) отметил, что Солнце должно быть достаточно мощным источником нейтрино. В 1950-е гг. Рэй Дэвис (Ray Davis) начал работать над экспериментом, способным обнаружить солнечные нейтрино. В 1968 г. ему удалось получить важнейший результат: экспериментальный верхний предел на поток нейтрино от Солнца оказался почти в три раза ниже теоретического предсказания. Возникла проблема солнечных нейтрино. Затем на протяжении десятков лет ученые с помощью различных установок научились регистрировать нейтрино, испускаемые в ходе различных реакций, и все они подтверждали наличие дефицита. Окончательно решить проблему удалось в самом начале XXI в. Выяснилось, что расчеты структуры Солнца и процессов в нем были верны. Сюрприз был связан с природой нейтрино.

Нейтринные осцилляции объясняют, почему поток электронных нейтрино на Земле меньше, чем предсказывает стандартная модель Солнца.

На протяжении десятилетий шел спор о том, имеют ли нейтрино массу. Изначальная гипотеза Паули (1930 г.) о существовании нейтральной частицы, которая позволяла объяснить особенности бета-распада (а заодно, в варианте Паули, и свойства атомных ядер), предполагала ненулевую массу. С течением времени эксперименты показали, что есть три типа нейтрино, соответствующих трем лептонам: электронное, мюонное и тау-нейтрино. В минимальной Стандартной модели элементарных частиц, созданной в середине 1970-х гг., все три нейтрино предполагаются безмассовыми (т. е. с нулевой массой). Обнаружение так называемых нейтринных осцилляций в экспериментах Super-Kamiokande («Супер-Камиоканде»), или просто Super-K, и на нейтринной обсерватории в Садбери (Sudbury Neutrino Observatory, SNO) в 2015 г. было отмечено Нобелевской премией по физике. Нейтринные осцилляции свидетельствуют, что на самом деле эти частицы имеют ненулевую массу. Хотя на момент открытия формально можно было объяснить явление нейтринных осцилляций не массой частиц, а «новой физикой», теперь такие объяснения не только выглядят «не элегантными», но и плохо согласуются с новыми экспериментальными данными, также свидетельствующими в пользу ненулевой массы нейтрино.

Феномен нейтринных осцилляций был предсказан в 1957 г. Бруно Понтекорво. С точки зрения наблюдателя, он состоит в том, что после испускания нейтрино любого типа детекторы на разных расстояниях от источника будут регистрировать нейтрино всех трех типов. Строго говоря, это не означает взаимное превращение частиц друг в друга. Нейтрино всегда является суперпозицией трех состояний, одно из которых может проявляться в данный момент. Осцилляции происходят и в вакууме, но наличие вещества может их усиливать (так называемый эффект Михеева – Смирнова – Вольфенштейна, иногда в данном случае говорят о неосцилляторных превращениях одного сорта нейтрино в другой, называя их адиабатическими превращениями сорта (adiabatic flavor conversion), но мы будем называть все превращения осцилляциями, чтобы не усложнять терминологию). Это позволяет решить проблему солнечных нейтрино. Эти частицы рождаются в результате термоядерных реакций в недрах Солнца, и при энергии нейтрино выше нескольких мегаэлектронвольт осцилляции в основном происходят внутри Солнца, а при более низких энергиях – по пути от Солнца до Земли. В результате мы регистрируем лишь около трети электронных нейтрино, возникающих при синтезе гелия из водорода.

1.3. 11-летний цикл активности

Одной из главных особенностей солнечной активности является наличие так называемого 11-летнего цикла. С этим периодом меняется количество солнечных пятен, вспышек, а также всех других проявлений активности, включая потоки радио-, рентгеновского и гамма-излучения. Этот цикл связан с изменением магнитного поля Солнца, полярность (направление) которого меняется с периодичностью около 22 лет. Однако детальные причины такого поведения Солнца остаются неизвестными: существующие модели генерации и эволюции магнитного поля, объясняющие солнечный цикл, нуждаются в проверке и, возможно, модификации и развитии.

Одиннадцатилетняя периодичность в количестве солнечных пятен была установлена в 1840-е гг. Генрихом Швабе (Samuel Heinrich Schwabe). С 1849 г. Рудольф Вольф (Rudolf Wolf) начал регулярные подсчеты солнечных пятен и их групп по разработанной им методике (так называемого числа Вольфа). Кроме того, он использовал архивные данные, чтобы установить, как менялось число пятен и групп начиная с 1749 г. Благодаря работе Вольфа и его последователей у нас есть качественные непрерывные данные по солнечным пятнам на протяжении 24 циклов. Именно это делает ряды наблюдений пятен ценнейшим материалом для изучения поведения Солнца, хотя в последние десятилетия разработаны и более надежные методы мониторинга солнечной активности.

Цикл начинается с минимума в количестве солнечных пятен. Первый цикл отсчитывают с 1755 г., а текущий (24-й) цикл начался в 2009 г. Продолжительность цикла лишь в среднем равна 11 годам, отклонения могут превосходить год (а иногда и два!) в ту или иную сторону.

Активность Солнца меняется с периодичностью около 11 лет.

Сейчас используется несколько методик подсчета солнечных пятен и их групп. Помимо подсчета числа пятен и групп измеряется и их площадь, а с 1946 г. для мониторинга солнечной активности используют также радионаблюдения на частоте 2,8 ГГц (длина волны 10,7 см). Разные методы по-разному определяют момент начала цикла, разброс между ними может составлять несколько месяцев.

Начало 11-летнего цикла солнечной активности принято отсчитывать с минимума.

Цикл – это всплеск солнечной активности, вызванный внутренними процессами, связанными с магнитным полем. Последовательно наступающие циклы могут слегка перекрываться, и это можно установить различными методами. Например, пятна в цикле начинают появляться на широтах ±30–40 градусов, а потом постепенно места появления новых пятен сдвигаются ближе к экватору. Соответственно, вблизи минимумов на Солнце могут присутствовать пятна и старого, и нового циклов.

Среднее (глобальное) магнитное поле на Солнце невелико. По порядку величины оно примерно такое же, как на поверхности Земли. Но локально (например, в пятнах) поля могут достигать величин в тысячи раз больше. Изменения полей порождают индукционные токи, сложная эволюция системы полей и токов в плазме приводит к богатству магнитогидродинамических процессов и многообразию активных явлений на Солнце (и других звездах).

Цикличность солнечной активности связана с изменениями магнитного поля.

Данные наблюдений указывают, что магнитное поле играет ключевую роль во всех проявлениях солнечной активности. В максимуме цикла меняется полярность глобального магнитного поля Солнца, величина поля в это время минимальна. Непосредственно вблизи максимума активности полярность поля может поменяться несколько раз. В минимуме солнечной активности величина глобального магнитного поля достигает максимума. Поэтому полный магнитный цикл составляет 22 года, за это время поле возвращается к прежней конфигурации.

Кроме того, меняется направление магнитного поля в солнечных пятнах. Обычно пятна появляются парами. Пятна в паре соединены линиями магнитного поля. В течение 11-летнего цикла лидирующее пятно в каждой паре в северном полушарии Солнца имеет одну и ту же полярность, а в южном – противоположную. В следующем цикле полярность меняется.

В максимуме цикла солнечной активности существенно возрастает светимость в радио-, ультрафиолетовом, рентгеновском и гамма-диапазонах. Однако полное энерговыделение звезды практически не изменяется.

Кривая интенсивности солнечной активности в цикле несимметрична. В среднем от минимума до максимума проходит около 4 лет, а потом в течение 7 лет активность уменьшается. Но циклы вовсе не одинаковы, они имеют разную форму кривой активности, длительность, уровень активности в минимуме и максимуме. Закономерности в изменении параметров циклов пытаются найти, но этот процесс, к сожалению, затруднен недостатком информации: данные по пятнам охватывают менее трех столетий, по магнитным полям – около века, а детальные данные наблюдений в других диапазонах спектра – всего лишь чуть более полувека.

Назад Дальше