Речь идёт исключительно о выделении систем, надсистем, подсистем вниманием прямо на работающей/функционирующей системе, а не о разборке систем на физические отдельные части в ходе её сборки/разборки (такое «строительное» рассмотрение тоже есть, но оно не главное).
Понятие системы в системном подходе более развито, чем понятие системы в физике (например, понятие термодинамической системы). Система в физике это просто часть мира/вселенной в рассмотрении. В этом плане есть рассматриваемая часть всего мира как система, граница системы и весь остальной мир за границей системы как окружение/среда/environment. Системы в физике долгое время не относили даже к полноценному системному подходу, потому как в физике особо не обсуждалась многоуровневость систем: там хватало обсуждения системы, состоящей из каких-то частей в её окружении, и только. В то же время понятие системы в физике используется весьма активно35.
Системный подход как основа системного мышления именно под названием systems thinking появился сначала на биологическом материале. Биологи пытались описать заливной луг как целое с его сотнями видов растений и животных и круглогодичными изменениями. Живое на части не разрежешь, луг оказался исключительно сложным объектом для описания и понимания. Поэтому системное мышление появилось как управление движением внимания исследователя по разным уровням деления целой системы на части (или наоборот, сборки вниманием целой системы из отдельно выбираемых вниманием частей).
Основы системного подхода претерпели существенное развитие с момента предложения в 1937 году биологом Людвигом фон Берталанфи общей теории систем. Вообще, подход (approach) – это когда разработанные в рамках одной дисциплины, одной предметной области понятия, методы мышления, приёмы действия применяются затем к другим дисциплинам и предметным областям. Общая теория систем была разработана главным образом на развитом на биологическом материале понятии физической системы, а уж затем было предложено применять её положения ко многим и многим другим предметным областям.
С момента появления общей теории систем в 30-х годах 20 века на базе системного подхода возникали и умирали целые дисциплины. Например, так родилась в 1948 году и затем в семидесятых была предана забвению кибернетика. Поэтому до сих пор можно встретить старинные варианты системного подхода, существенно переплетённые с кибернетикой и несущие в себе все её недостатки, прежде всего попытку свести понимание мира как работы поддерживающих гомеостаз (т.е. неизменность своего состояния) систем с обратными связями. Кибернетика активно пыталась быть использована в госпланировании и показала там неадекватность: экономика сама по себе неравновесна, никакого «баланса спроса и предложения», возвращающего к равновесию, нет, ибо экономика развивается, меняется, а не балансирует вокруг какого-то «равновесия». Остатки кибернетики существуют теперь только в виде теории автоматического регулирования, где действительно нужно управлять в технической системе каким-то постоянным параметром, следить за «отклонениями». Но в большинстве ситуаций речь идёт не об «отклонениях» от точки равновесия, а как раз о продвижении к каким-то целям и опоре на неравновесные состояния.
Самый распространённый вариант кибернетического системного подхода отражён в способе моделирования «системная динамика» (system dynamics36) и сводится к нахождению и явному отражению в модели каких-то связей, которые могут замыкаться в циклы, приводя к появлению колебаний вокруг какого-то положения равновесия. Такое «кибернетическое моделирование» сверхупрощено и плохо отражает самые разные виды систем, совсем не похожие на «регулятор Уатта».
Развитие, эволюция отлично описываются системными представлениями, но плохо описываются представлениями «управления», представлениями кибернетики. А в целом моделирование разных связей на одном системном уровне (и даже на разных системных уровнях) выполняется произвольными системами дифференциальных уравнений (иногда это описание произвольными системами дифференциальных уравнений в инженерии называют «системное моделирование», но оно существенно шире узкого класса уравнений «системной динамики»). Но это уже не совсем системный подход, это просто имитационное моделирование физических систем (и иногда организационных систем).
Системный подход уже получил широкое распространение в инженерии и менеджменте. В инженерии в пятидесятые-шестидесятые годы превалировало «математическое» понимание системного подхода, которое по факту сводилось просто к активному использованию математического моделирования при решении инженерных проблем. «Системность» заключалась в том, что модели при этом набирались из разных дисциплин для разного уровня структуры системы, и описание тех или иных систем проводилось с использованием многочисленных моделей, отражающих разные интересующие инженеров и учёных свойства систем в различных ситуациях. Такое системное моделирование (часто говорили «системный анализ», ни о каком синтезе тогда и речи не было) противопоставлялось так называемому редукционизму (сведению к простому), для которого было характерно выделение одной главной точки зрения, одной дисциплины для какого-то уровня структуры объекта или предмета исследования, один метод моделирования – скажем, человек рассматривался на уровне молекул (т.е. биохимическом уровне), и из этого пытались выводиться все знания о человеческой природе: в том числе и его мышление, и социальное поведение объяснялось как сложное сочетание биохимических процессов.
Системный подход преодолевал очевидную бессмысленность одноуровневого упрощенчества редукционизма, и поэтому стал очень популярен. Системно мыслить – это прежде всего удерживать во внимании тот уровень дробления системы на части, на котором уместно обсуждать проявляющиеся на этом уровне новые (emergent, эмерджентные) свойства, которых ещё не было на предыдущих уровнях разбиения системы на части, и уже нет на уровнях выше системы, на уровне надсистемы.
Вкус борща в момент его готовки нужно обсуждать как зависящий от способа приготовления его из кусочков овощей и мяса, неадекватно обсуждать идущие в ходе готовки биохимические процессы на уровне клеток растений-овощей и клеток мяса. Эти процессы никуда не деваются, они вполне себе идут в ходе готовки, но это неправильный уровень структуры вещества для обсуждения вкуса борща! Знание о том, как сворачивается белок мяса в ходе варки борща, конечно, имеет непосредственное отношение к изменению вкуса сырого мяса на варёное, но вряд ли это поможет повару! Вниманием нужно выделять целые овощи и их куски, приёмы готовки и зависимость вкуса от этих приёмов обсуждаются на этом уровне крупности вещества: целые овощи и куски мяса, нарезанные на небольшие кусочки, принятые в той или иной кухне (чуть более крупные в южной готовке, чуть более мелкие в северной). И нельзя обсуждать вкус борща, если обсуждать званый вечер со сменой шести блюд, где борщ будет только одной из смен: обед уже не имеет «вкус борща», хотя борщ там и является его составляющей частью. И главное – это просто выделение вниманием в реальной ситуации готовки борща и реальной ситуации обеда нужных нам для каких-то целей (приготовление обеда с вкусным борщом) частей.
Ситуация с борщом кажется простой, но давайте возьмём проект создания авиалайнера, в котором планируется 6 млн индивидуальных деталей. Как вы с огромной командой из пары сотен тысяч занятых его изготовлением человек будете рассматривать этот авиалайнер, чтобы не упустить ничего важного? На уровне структуры материалов, из которых этот авиалайнер состоит? Это будет правильно, если считать прочность лайнера. Но если считать подъёмную силу его крыльев, то этот уровень структуры материала не поможет. Большую и сложную систему из миллионов индивидуальных частей нужно описывать на множестве уровней её сборки в целое, описывать самыми разными способами, не терять ни один из них – системное мышление помогает именно в этом, не потерять внимание тысяч людей, не забыть что-то важное, не отвлечься на неважное.
Управлять вниманием к 6 млн индивидуальных деталей в авиалайнере, чтобы не забыть ни одной детали, и рассмотреть и аэродинамику, и пассажировместимость, и общую стоимость проекта, и безопасность при попадании молнии, и размеры цеха для сборки авиалайнера – вот это всё стало не интеллектуальным подвигом, а обыденной мыслительной работой после появления системного мышления в инженерии. И имена гениев-авиаконструкторов вроде Мессершмитта и Туполева остались в прошлом, для современных более сложных самолётов уже не нужно иметь гениев в составе команды! Системное мышление, поддержанное компьютером, вполне справляется. Не нужно иметь абсолютного гения Королёва, чтобы делать такие сложные запуски космических кораблей, какие делает сейчас SpaceX.
Дошли до того, что системное мышление начали объявлять в пику редукционизму холистическим (то есть говорящем о примате целого над частями: поведение частей объясняется существованием целого). Но холизм оказался такой же ошибкой, что и редукционизм: системное мышление борется с полным отказом от рассмотрения зависимостей поведения целого как поведения его частей (редукционизм) как и полным отказом от рассмотрения зависимостей поведения частей в зависимости от происходящего с целым (холизм).
Слово «система» в конце семидесятых годов стало респектабельным, и его стали использовать в том числе и те люди, которые были совсем незнакомы с системным подходом в любой его версии, которые не понимали сути системного подхода, его способа управления вниманием при рассмотрении сложных ситуаций. По факту, слово «система» вдруг стало синонимом слова «объект» – что-то, что попало в сферу нашего внимания. Связь со вниманием осталась, но специфика того, что речь идёт о внимании к определённому уровню крупности нарезки на объекты, и уровней этих множество, и способов нарезки тоже множество – вот это было полностью потеряно. Никакого системного мышления, которое потом бы работало с «объектами-системами», увы, у пользующихся словом «система» не было.
В восьмидесятых в менеджменте тоже появилось множество учебников системного подхода, математики там уже не было. Акцент делался на том, что в системе «всё со всем связано», и существенные связи могут выпасть из традиционных монодисциплинарных рассмотрений. Поэтому нужно привлекать самых разных людей, чтобы в их общении получить возможность выявления этих существенных связей. Менеджерское изложение системного подхода было ценным тем, что в нём обратили внимание на необходимость учёта людей при обсуждении систем (потом этих людей назовут проектными ролями/стейкхолдерами/stakeholders, сделают их рассмотрение обязательным и речь пойдёт не о самих людях, а об их ролях по отношению к системе – и тем самым в восьмидесятых годах прошлого века появится второе поколение системного подхода. Хотя исполнителей ролей и сами роли будут нещадно путать, слово stakeholder будут применять очень по-разному). С другой стороны, если читать книжки с менеджерскими изложениями «системности», то на каждую их рекомендацию «учитывать целостность системы», «думать холистически», «смотреть на проблемы с разных сторон» нужно было бы дать ещё десяток: как именно это делать, а на каждое «думать холистически» не мешало бы напоминать, что про части системы тоже нужно не забывать. Многоуровневость разбиения системы на части не подчёркивалась, различные способы разбиения на части не рассматривались.
Такая же неконкретность в советах по управлению вниманием в сложных ситуациях может быть обнаружена во многих книгах по общей теории систем: прописанные там общие закономерности мало отличаются от философских обобщений, их трудно непосредственно применять в деятельности. Да, хорошо бы думать о системе в целом – но как вообще увидеть систему в сложности окружающего мира? Это будет надсистема или подсистема? А если соседи по проекту увидели систему совсем по-другому, провели границу системы другим способом, нашли в системе другие части, определили функцию системы в надсистеме не так как вы, что в этом случае делать?!
Менеджерские книжки по системному подходу выглядят пожеланием «быть здоровым и богатым, а не бедным и больным». Никто не возражает «смотреть на систему с разных сторон»! Но с каких именно сторон? И как смотреть на что-то невидимое, например, на вездесущий в менеджерских книгах «процесс»?
Самых разных школ системной мысли с различающимися терминологиями, выделенными основными принципами, какими-то наработанными инструментами моделирования существуют десятки и сотни. Поэтому говорят о системном движении, у которого нет каких-то влиятельных координаторов или ярко выраженного центра, просто отдельные люди в разное время в разных странах чувствуют силу системного подхода и начинают им заниматься самостоятельно, не слишком сообразуясь с другими. А поскольку критериев для отнесения той или иной школы мысли к системному движению нет, то иногда «патриоты» в России и тектологию А. Богданова считают ранним вариантом системного подхода37.
Буквально в последние пять лет появились работы физиков, которые пытаются объяснить сложность биологических систем со множеством уровней организации/эволюционных уровней/системных уровней как вытекающую из физических законов. Раньше эти попытки не удавались, но в 2021 году Giorgio Parisi получил нобелевскую премию по физике 2021 года (https://www.nobelprize.org/prizes/physics/2021/parisi/facts/) за открытие явлений неустроенности (frustration, не путайте с психологическими «фрустрациями», это от совсем других, геометрических «неустаканенностей»38, термин пошёл с 1977 года), приводящих к беспорядку и флуктуациям в физических системах от атомарных до планетарных масштабов. То есть 1977 год можно считать моментом, когда физики стали изучать механизмы процессов, в которых участвуют неэргодические системы, то есть системы с памятью. Первым хорошо изученным примером таких систем стали спиновые стёкла. Стекло – это не кристаллическая структура, но и не жидкость. Стекло нельзя нагреть, охладить и сказать, что оно пришло в то же состояние, как это было бы с кристаллической решёткой или жидкостью – нет, состояние будет другое, ибо в стёклах есть память, они не эргодичны39 в отличие от самых разных других физических систем. Эти исследования позволили продвинуть понятие «система» так, что системы в биологии получили объяснительные модели с опорой на физику и математику.
Идея неустроенностей/frustration хорошо изученная физиками на примерах стёкол как систем с памятью позволила физику Кацнельсону и биологам Вольфу и Кунину в 2018 году сделать предположение40, что сложность биологических систем и вся эволюция в целом происходят именно от вот этих «неустроенностей», причиной которых становятся конкурирующие/конфликтующие взаимодействия на разных системных уровнях (скажем, клетки печени хотят неограниченно размножаться, но им это не дают – ибо для организма это же будет рак печени! Или паразит хочет заразить и убить всех хозяев, но тогда вымрет вся его популяция, и выживают только не слишком заразные паразиты). Именно эти «неустроенности» от конфликта устремлений систем на разных системных уровнях (в биологии – уровнях организации – молекулы, клетки, организмы, популяции, экосистемы) порождают все более и более сложные системы всё более и более высоких уровней организации. Это и есть источник жизни в её многообразии: жизнь это физический процесс, порождающий сложность за счёт преодоления неустроенностей, проистекающих из-за конфликтующих взаимодействий.