ИИ-копирайтер использует алгоритмы обработки естественного языка на нейронных сетях глубокого обучения и выдает 20 тыс. строк в секунду[15].
Раньше копирайтеры, работающие в продажах, часами изучали списки ключевых слов и частоту кликов, чтобы понять, что заставит клиента кликнуть на ссылку в результатах поиска. А с появлением ИИ анализ запускается одним нажатием кнопки.
Вот что происходит: многочисленные версии рекламы прогоняются через алгоритмы, обученные на данных по пользовательскому поведению. Система определяет, какие сочетания слов чаще приводят к нажатию на ссылку, и вносит их в карточку товара.
Облачные сервисы
Как Amazon и Google, Alibaba предлагает бизнес-клиентам ИИ-услуги облачного сервиса – крупнейшего в Китае[16].
В предложение входит платформа машинного обучения ИИ. Она содержит решения для компаний, которым нужны когнитивные вычисления (обработка естественного языка и компьютерное зрение), но у которых пока не хватает финансов на собственную инфраструктуру.
На конкурсе Стэнфордского университета технология обработки естественного языка Alibaba победила человека в состязании, кто лучше поймет прочитанное.
В 2018 году технология обработки языка на глубоких нейронных сетях прошла тест из 100 тыс. вопросов и победила человека со счетом 82,44: 82,3[17].
«Умные города»
Alibaba разработала специальные инструменты, чтобы автоматизировать управление транспортными потоками, освещение, сбор мусора и другие задачи в городах с сетевой инфраструктурой.
Alibaba City Brain регулирует движение на всех улицах Ханчжоу – города с населением 9,5 млн человек. По данным системы, дорожные пробки сократились на 15 %[18]. Вскоре такую же технологию внедрят в малайзийском Куала-Лумпуре.
City Brain отслеживает дорожное движение и по собственным моделям прогнозирует места возникновения заторов. Обнаружив такое место, он изменяет режим светофоров в этой зоне, чтобы не возникали пробки.
Умными билетными автоматами в шанхайском метро тоже управляет ИИ Alibaba. Автомат выдает информацию по маршруту в ответ на запрос и идентифицирует личность пользователя с помощью технологии распознавания лиц[19].
«Умная ферма»
Alibaba разработала ИИ-систему наблюдения за скотом, сельскохозяйственными и плодовыми культурами.
Крупнейшие в мире поставщики свинины – китайские фермеры – получили доступ к технологиям, которые контролируют активность и здоровье животных и сами решают, увеличить животному порцию или заставить его больше двигаться[20].
Растущее население надо чем-то кормить, и система позволяет фермерам быстрее воспроизводить поголовье, улучшать здоровье скота и снизить смертность новорожденных животных. Система также поможет выращивать сельскохозяйственные культуры и разумно использовать землю.
Академия открытий, проектов, динамики и перспектив
Стратегия ИИ компании Alibaba основана на том, чтобы предоставить компаниям и частным клиентам передовые технологии машинного обучения и решения глубокого обучения через облачные сервисы.
ИИ-платформы доступны для бизнеса через облачную структуру, которая объединяет 18 международных центров данных. Там установлено оборудование для предоставляемых в качестве услуг ИИ-алгоритмов и технологий обработки данных.
В 2017 году Alibaba анонсировала, что в следующие три года инвестирует 15 млрд долларов в расширение международной сети исследований и опытного производства ИИ. Программа называется «Академия открытий, проектов, динамики и перспектив» (Academy for Discovery, Adventure, Momentum and Outlook – DAMO). Для работы в лабораториях в Пекине и Ханчжоу в Китае, в Сан-Матео и Бельвью в США, а также в Москве, Тель-Авиве и Сингапуре наймут 100 исследователей[21]. Они сосредоточатся на машинном обучении, обработке естественного языка, интернете вещей, взаимодействии человека и машины и квантовых вычислениях.
Самое главное
• Alibaba – крупнейший китайский инвестор в исследования и развитие ИИ, что дает компании фору в гонке за лидерство в этой сфере.
• Модель предоставления ИИ многочисленным частным клиентам и компаниям основана на облачном сервисе. Клиенты ничем не рискуют и экономят на создании инфраструктуры, а Alibaba получает доступ к ценным данным о поведении пользователей.
• Применяя технологии повышения продаж в решении других общественных и бизнес-задач, Alibaba расширяет область применения ИИ внутри и за пределами своего бизнеса.
2. Alphabet и Google. Как преумножить потенциал ИИ
Международная группа компаний Alphabet размещается в США. Она специализируется на интернет-сервисе, технологиях и медико-биологических исследованиях. Среди прочих сюда входят поисковик Google, медико-технологическая компания Verily, производитель беспилотников Waymo, создатель устройств для «умного дома» Nest и Deep Mind – разработчик ИИ.
В 2017 году Сергей Брин, президент Alphabet, заявил: «Новый скачок в развитии ИИ – самое значительное событие в компьютерной области за всю мою жизнь»[22], то есть важнее создания интернета.
В Alphabet осознают потенциал ИИ и применяют его во всех сферах: в оптимизации поисковиков, в беспилотных автомобилях, «умных домах», виртуальных помощниках, языковых переводах и медицинских технологиях.
Как Alphabet использует ИИ
«Умный» поиск
Самый популярный в мире поисковик Google оснащен ИИ. Текстовые и голосовые запросы и изображения обрабатывает умная самообучающаяся система – с 2015 года, когда был запущен RankBrain[23].
Текстовый и голосовой поиск основан на обработке естественного языка: алгоритмы оценивают слова в контексте, а не по отдельности. Это семантический анализ.
В поиске по картинкам компьютерное зрение распознает и классифицирует данные об изображении, чтобы пользователи могли найти его текстовым или голосовым поиском. Алгоритмы глубокого обучения постоянно совершенствуются в том, чтобы распознавать и классифицировать отдельные элементы изображения. Чем больше учебных картинок обрабатывает машина, тем лучше понимает, что на них представлено.
Когда ИИ Google проанализировал запрос и предположил, что вам нужно, он сразу обращается к каталогу онлайн-контента: веб-страниц, изображений, видео и документов. Они уже обработаны системой машинного обучения.
Системы учатся сортировать, ранжировать и фильтровать контент каталога. Каждая единица контента оценивается по количеству ссылок на нее, точности содержащейся в ней информации. Также ИИ проверяет, не спам ли это или реклама и не нарушает ли контент закон или авторские права.
Обычный поиск Google – это множество сложных, мгновенно выполняемых вычислений ИИ. Системы, способные ежедневно осуществлять миллиарды вычислений, вознесли Alphabet и Google на вершину и принесли невероятную прибыль.
Google использует ИИ для других целей, например чтобы обеспечить безопасность аккаунтов Gmail и сервиса контекстной рекламы, которую показывают только потенциально заинтересованным пользователям.
Персональный помощник на базе ИИ
Персональный помощник с голосовым управлением на основе ИИ появился несколько лет назад. Сегодня всем известны Google Home, Amazon Alexa и Apple Siri.
Поначалу обработка естественного языка в пользовательских устройствах впечатляла, особенно по сравнению с недавним прошлым, но обнаружились ее ограничения. ИИ хорошо понимает только элементарные и короткие предложения и команды. Попробуйте поговорить с ним, как с обычным человеком, – и он сразу запутается.
По человеческим меркам нынешний ИИ – младенец. А если говорить на языке науки, ему не хватает данных. Но он быстро растет, например благодаря технологии Google Duplex. Она поддержит и довольно неформальную беседу, потому что обучена для конкретных ситуаций, и алгоритмы собирают только касающиеся этих событий данные. Google демонстрирует прогресс Duplex на примере записи в парикмахерскую по телефону[24]. В таких узких и контролируемых случаях технология ведет себя почти по-человечески. Для этого инженеры Google запрограммировали свойственные нашей речи междометия: машина вставляет в разговор «эм-м», «ах» и «угу», когда сочтет это уместным.
Языковой перевод
Компьютер можно научить говорить на одном языке, а любой другой он освоит сам с помощью машинного обучения. По этому принципу работает переводчик Google, раскладывая язык на основные составляющие. Глубокие нейронные сети Google Translate постоянно оттачивают алгоритмы, изучая новые языки, и так совершенствуются в точности переводов. Google внедрила эту функцию в наушники Pixel Buds на базе Google Assistant, и пользователи могут слушать трансляцию перевода почти в режиме реального времени[25].
Беспилотные автомобили
У Waymo – подразделения Alphabet, которое разрабатывает беспилотные автомобили, – одна из самых развитых платформ в мире. Недавно компания стала первым коммерческим перевозчиком[26].
Alphabet пошел еще дальше: автомобили полностью автоматизированы, в них даже нет руля и педалей. Они созданы для новой урбанистической эпохи, в которую быть владельцем автомобиля – дорого и неудобно. Сервис Waymo ориентирован на частный извоз: по прогнозам компании, такой формат будет основным в умных городах будущего.
Субтитры к миллионам видеозаписей
В машинном обучении Google использует алгоритмы естественного языка, когда автоматически записываются субтитры для слабослышащих (или предпочитающих тишину) людей на сервисе потокового видео YouTube. Как и с речью, для идентификации звуков (аплодисментов, музыки) система использует глубокие нейронные сети и автоматически выводит текст: он сообщает зрителю, что происходит[27].
Диагностика заболеваний
Технология ИИ Alphabet (в частности на базе глубокого обучения) широко применяется в медицине. Из недавних новшеств стоит упомянуть офтальмологическую диагностику. Для обучения алгоритмов используются снимки оптической когерентной томографии – инфракрасные 3D-изображения глазного яблока[28]. Система основана на двух алгоритмах глубокого обучения. Один строит подробную схему устройства глаза и определяет, что нормально, а что может быть симптомом болезни, например возрастной макулодистрофии (истончение сетчатки глаза). Второй алгоритм анализирует медицинские показатели и выдает специалистам диагноз и схему лечения.
Google Brain
Исследовательское подразделение искусственного интеллекта Google называется Google Brain. Его основали в 2011 году Джефф Дин, Грег Коррадо и Эндрю Ын из Стэнфордского университета. Они стали пионерами практических технологий ИИ.
В Google Brain предположили, что обширные сверхбыстрые сети хранилища и огромный объем данных интернета, который проходит по их серверам, пригодятся для машинного и глубокого обучения. С тех пор команда разработала ключевые технологии, такие как компьютерное зрение и обработка естественного языка, и сделала ИИ востребованным в бизнесе[29].
Deep Mind
Deep Mind – еще один знаковый для Alphabet термин, появившийся в 2014 году. Британский стартап специализировался на симуляторах нейронных сетей мозга и обучал их играть в игры. Исследователи Deep Mind наблюдали, как мозг решает когнитивные, то есть связанные с познанием, задачи во время игры, а данные использовали для обучения машин. Технология стала сенсацией в 2016 году, когда оснащенный ей компьютер победил профессионального игрока в го[30].
Сегодня на Deep Mind работают интеллектуальные программы Alphabet. Они управляют охлаждающим оборудованием дата-центров, оптимизируют расход аккумулятора мобильных устройств на Android и т. д. А еще они участвуют в офтальмологической программе, о которой речь шла выше.
Самое главное
Alphabet и Google считают ИИ отправной точкой для революции компьютерных технологий.
• Компании уверены, что влияние следующей волны на общество будет еще более значительным, чем появление интернета.
• Большой объем данных позволил Alphabet разработать первые в своем роде услуги: поиск, показы рекламы, языковой перевод, обработку речи, «умные дома» и беспилотные автомобили.
• Благодаря инфраструктуре и вычислительной мощности для обработки большого объема данных на необходимой для поисковика супервысокой скорости Google применила все эти возможности к ИИ.
• Финансовые ресурсы Google позволили воспользоваться всеми качественно новыми разработками исследовательских групп и стартапов в сфере ИИ, такими как глубокое обучение.
3. Amazon. Глубокое обучение повышает показатели бизнеса
Основателю книжного интернет-магазина Amazon Джеффу Безосу было все равно, чем торговать: он хотел подняться на буме онлайн-продаж, который предвидел. Сегодня Amazon – международная торговая площадка и ведущий мировой провайдер облачных вычислений. Компания занимает третье место по выручке и рыночной капитализации. Помимо онлайн-магазина и предоставления облачных услуг компания владеет издательским подразделением, кино- и телевизионной студией и производит бытовые товары: электронные книги Kindle, планшетные компьютеры и медиаплееры Fire и умные колонки Amazon Echo.
С начала 1990-х Amazon использовала прогностическую аналитику. И внедряла ее везде – от знаменитого рекомендательного сервиса до оптимизации маршрута роботов в центрах исполнения заказов. В начале последнего десятилетия растущий потенциал машинного обучения заставил интернет-гиганта пересмотреть все аспекты деятельности. Безосу мало было обойти Walmart и Target на рынке продаж – он претендовал на уровень Google, Facebook и Apple и первое место в технологической сфере. Значит, надо было внедрять глубокое обучение в ключевые сервисы и расширять деятельность. Так появились умные колонки Echo с виртуальным помощником Alexa и бескассовые супермаркеты.
Среди дальнейших планов – доставка заказов автоматизированными дронами и «опережающая доставка» (до заказа) товаров, которые могут понравиться клиенту.
Как Amazon использует ИИ
Amazon первой внедрила рекомендательный сервис, то есть предложение товаров на основе предыдущих покупок. Это с самого начала было основой бизнес-стратегии компании. За годы аналитические инструменты усовершенствовались, но до сих пор делят пользователей на категории по собранным о них данным, моделируют поведение и предлагают товары, популярные у покупателей из той же категории.
В начале 2014 года компания запустила крупную модернизацию существующей рекомендательной системы: начала внедрять алгоритмы глубокого обучения в прогностические инструменты[31]. Сейчас глубокое обучение встроено в большинство функций сайта, разработанных для персонификации покупательского опыта: «эти товары часто покупают вместе», «купившие этот товар также приобрели…» и т. д.
Глубинные слои нейронных сетей учатся так же, как человеческий мозг, – на данных, которые через них проходят. Алгоритмы постоянно совершенствуются в поиске паттернов и связанных данных – в случае Amazon это данные о транзакциях и покупательском поведении. На этих алгоритмах работают рекомендательный сервис Amazon, поиск Google, лента Facebook и подбор фильмов Netflix. Как и соперники в борьбе за первое место, Amazon делает ставки на глубокое обучение – двигатель революции ИИ.