Но «западный научный ум» никак нельзя недооценивать. По мере активно ведущихся компьютерных экспериментов с эволюцией и обучением, растёт понимание ситуации переоценки долгосрочного планирования.
Ещё одна книжка, в которой эволюции как постоянному развитию посвящён довольно большой кусок, написана Pedro Domingos, исследователем машинного интеллекта – «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»57.
Эволюция преподносится там не как поиск/search, а как вариант обучения/learn. Можно считать, что ты учишься сложности мира – в том числе учишься без учителя (unsupervised learning), или выступаешь учителем самому себе (self-supervised learning), давая самому себе задания и пытаясь их выполнять. Про это же самое можно рассказывать и как о «поиске сокровищ». Бесконечное развитие можно обсуждать и как бесконечный поиск, и как бесконечное обучение: поиск сокровищ в длинной череде проектов подразумевает обучение справляться с задачами этих проектов. В машинном интеллекте парадигма бесконечного развития, бесконечного (life-long learning) обучения вместо «решения поставленной проблемы» стремительно набирает вес.
Проектов развития хватит для всех, особенно если учитывать критерий новизны при выборе проекта. Исследуйте новое на самой границе известного, это окупается! И каждый шаг развития позволит вам увидеть что-то ещё, шагнуть дальше. Если не ходить проторенными туристическими тропами, на которых уже давно все сокровища расхватаны, то вам этих сокровищ на жизнь хватит. Главное – не загадывать заранее, какими должны быть эти новые камушки, новые проекты, какие именно сокровища там должны быть. Главное – не загадывать заранее мечту-утопию. В мечте будет встреча с изумрудом, а встретится вам алмаз. Не проходите мимо алмаза!
Стало понятно, почему не может работать госплан58 – невозможно рационально вычислить потребности большого числа людей, да ещё и на достаточно длительном интервале времени, поэтому, сколько каких продуктов производить, и по какой цене, вычислить не удастся. Будущее покрыто туманом, и мы ничего не можем сказать о будущих продуктах, поэтому не можем знать, сколько каких деталей нужно произвести для того, чтобы собрать эти будущие продукты. Рынок – это квазиэволюционный процесс, он подразумевает бесконечное развитие продуктов.
Нет никакой «миссии», «смысла жизни», есть бесцельная эволюция – поиск всё нового и нового, рост сложности найденных проектов-сокровищ и тем самым рост адекватности разнообразия продуктов сложному миру как результат эволюции.
Один небольшой шаг на границу тумана будущего планируйте, ставьте абсолютно приземлённую цель – на один шаг, не на всю жизнь. Используйте интуицию – машинное обучение даёт абсолютно рациональные ей объяснения (и даже моделирует в глубоких нейронных сетях). А маршрут на несколько шагов неизвестно куда в туман будущего – не получится планировать, будущее непредсказуемо ни для человека, ни для компьютера.
Установка на достигательство и мечтательность входит в мозг с младых ногтей, и трудно рационально её преодолевать. Но тренд налицо: вопрос упорства в достижении каких-то целей поднят, вопрос обсуждается, меднолобым фанатам с их «главное – в себя поверить» начинают выставляться рациональные аргументы.
Бесконечное развитие (open-endedness)
ПРОЦЕССЫ, БЕСКОНЕЧНО ПОВЫШАЮЩИЕ РАЗНООБРАЗИЕ
И СЛОЖНОСТЬ
Бесконечное развитие (open-endedness) это идея, которая позволяет в разы компактней и точнее (т.е. с использованием математических моделей) говорить про сложные вопросы «прогресса», «развития», «целеполагания», «эволюции», «вечного обучения», «постоянной инновации» и т. д. Идея бесконечного развития помогает отбросить бессмысленные споры по вопросам типа «труба ржавеет: можно ли сказать, что она развивается? Что будет прогрессом для трубы?».
Под словами «бесконечное развитие» сегодня скрывается более общий концепт, чем даже «эволюция» (эволюция тут будет только частный случай). Речь идёт об алгоритмах, исполнение которых порождает всё более и более сложные объекты. Это алгоритмы вечно непрекращающегося творчества.
О чём угодно можно говорить как о «лучшем известном на сегодня», state-of-the-art (SoTA). Завтра лучшее будет другим, SoTA всегда имеет дату. Лучшая теория гравитации в 1600 году не включала силы гравитации, в 1800 году гравитация объяснялась как сила притяжения массивных тел, в 2000 году лучшая теория гравитации (теория относительности) говорит об искривлениях пространства времени, и гравитация не является силой! SoTA в науке, инженерии и много чём другом меняется со временем, и это будет бесконечно.
Open-endedness переводится обычно как «открытость» или в крайнем случае «незавершённость», и весь аромат английского слова немедленно теряется. Поскольку это применяется к алгоритмам, которые всё время научаются делать что-то новое, то это мы будем переводить как «бесконечное развитие». Это «что-то новое» в подобных алгоритмах и называется stepping stone/ступенька.
Это может быть биологический вид в эволюции, вид продукта или сервиса в технологической эволюции, вид мастерства в эволюции деятельности.
И как растёт видовое разнообразие и сложность организмов в биологической эволюции, растёт разнообразие и сложность продуктов и сервисов в технологической эволюции, растёт разнообразие и сложность деятельностей и тем самым разнообразность и сложность мастерства в этих деятельностях. Люди на земле владеют всё более и более разными видами мастерства (углубление разделения труда), и эти виды мастерства всё более сложно освоить, для надлежащего уровня требуется 4—10тыс. часов прохождения ступенек в мастерстве от «полный новичок» через «иногда получается» до «настоящий мастер».
МАЛО УЧИТЬСЯ РЕШАТЬ ПРОБЛЕМЫ.
НУЖНО ЕЩЕ И СТАВИТЬ ПРОБЛЕМЫ
Базовый текст декабря 2017 года «Open-endedness: The last grand challenge you’ve never heard of»59 написан в соавторстве с Lisa Soros теми же Kenneth O.Stanley и Joel Lehman, которые в 2015 году написали книжку про важность новизны, «Why Greatness Cannot Be Planned: The Myth of the Objective».
В соответствии с подходом бесконечного развития, нужно не просто решать проблемы – ибо сложность и изящество решения при этом ограничено сложностью проблемы. Нужно делать две вещи: 1) порождать проблемы и 2) решать их.
Всё более и более сложные проблемы должны быть не любые, а находящиеся в зоне «ближнего развития» – ни слишком трудные для решения, ни слишком лёгкие (тут в английском используется ещё одно плохо переводящееся слово: goldilocks, означающее в том числе «не горячее, и не холодное, а в самый раз»). Бесконечное развитие требует ступенек, ни слишком низеньких, ни слишком высоких.
В январе 2019 года Stanley (он сейчас возглавляет лабораторию искусственного интеллекта в OpenAI) и Lehman сделали алгоритм бесконечного развития60 а в марте 2020 года усилили этот алгоритм61. Алгоритм порождает своей стратегирующей частью всё более и более сложные рельефы местности (даёт параметры генератору рельефов: «ставит цель»), а затем его решающая часть-робот решает эти проблемы, то есть учится проходить заданные частью целеполагания рельефы. Оказалось, что постепенно наученные через «проблемы в зоне ближнего развития» роботы могут проходить в конечном итоге самые сложные среды, а попытки просто «решить проблему» без этих промежуточных научений, а просто «научиться с нуля», без stepping stones/ступенек проваливаются. Оказывается, без эволюции, без промежуточных ступенек мы не можем научиться чему-то сложному! Обучение какой-то деятельности должно быть многоступенчатым, развитие должно проходить через ступеньки, находящиеся на границе тумана – ни слишком трудные (тогда научение невозможно), ни слишком лёгкие (тогда не будет накоплен опыт).
Для алгоритма бесконечного развития нужно достаточное время, и мы получим удивительные результаты. По большому счёту, эволюция на Земле получила удивительный результат, ибо она как раз реализует такой алгоритм: условия существования Земли ставят всё более и более разнообразные и сложные задачи развивающимся на ней животным и растительным видам, а эти виды достигают удивительного мастерства в решении этих задач. Один из самых интересных моментов тут – это получение биологического интеллекта, затем развитие цивилизации, а сейчас и получение машинного интеллекта. Человечество ставит и ставит себе всё более и более сложные задачи, и научается эти задачи решать.
Этот алгоритм реализуется не только всей Землёй, не только всей цивилизацией, но даже в одном мозге. Автор когда-то задавал вопрос проф. Дж. Гриндеру (одному из основоположников нейролингвистического программирования), считает ли он перспективными «остановку внутреннего диалога» и прочие средства обеспечения «единства сознания», «недуальности». Джон Гриндер отвечал, что не считает: для развития всегда должно быть некоторое противоборство, критика, а хоть и в одном мозге. Единство – это путь к стагнации, а не к развитию/эволюции/прогрессу, как это ни назови. Поэтому даже в одном и том же мозге постановщик проблем должен всё время ставить задачу, а решатель проблем учиться её решать – и так развиваться до бесконечности. Никакой остановки, никакой стагнации, никакого успокоения при достижении «конечной цели». Каждая новая цель, каждая новая ступень сложней предыдущей, цепочка этих ступеней никогда не заканчивается, это и есть жизнь.
А КАК С НАУКОЙ? ТАМ ТОЖЕ БЕСКОНЕЧНОСТЬ РАЗВИТИЯ?
Да, в науке всё то же самое: наука ищет всё более и более точные объяснения того, как устроен мир. SoTA в научных объяснениях постоянно меняется. И эти изменения будут бесконечны. Люди не знали о существовании микробов и вирусов, и поэтому смертность от инфекционных заболеваний (родильная горячка, например, как первое с чем сталкивались буквально при рождении) была запредельно высока. Затем появились объяснения, которые рассказали о микробах и вирусах и их связи с заболеваниями, на основе этих объяснений были выработаны простые, но контринтуитивные предложения по борьбе с болезнями. Родильную горячку победило мытьё рук! Этот рецепт «мойте руки, и не будет родильной горячки» был совсем, совсем неочевиден, пока не было объяснения причин: не рассматривались микробы как причина болезни.
Но можно ли сказать, что всё уже известно про инфекционные болезни? Конечно, нет! Пример пандемии показывает, что неизвестного ещё много. Или даже по-другому: неизвестно, что из известного действительно известно! Может быть, SoTA в знаниях об эпидемиях уже есть, но конкурирующие теории ещё не опровергнуты (или об их опровержении ещё не догадываются, не признают этого, обычное ведь дело в истории!), поэтому текущее SoTA не позволяет выработать хорошие предложения. И защита от эпидемий ограничивается всё тем же мытьём рук и бессмысленными ритуалами типа поливания тротуаров хлоркой (что приносит вред здоровью и честно квалифицируется политиками не как защитная мера, а как «психологический сигнал гражданам»). Наука игнорируется, ибо сама суть науки – это свободное обсуждение теорий, но теории эпидемий обсуждать свободно сегодня нельзя. Например, SoTA в прививках от гриппа и коронавирусов говорит, что ввиду большой изменчивости штаммов прививки оказываются неэффективны. Фармакологические компании, понятно, с этим не согласны. Кто победит в дискуссии, если одной из сторон рты затыкают не учёные своими аргументами и экспериментами, а власти и даже частные СМИ? И ещё в этом участвуют не просто деньги, а очень большие деньги фармацевтического лобби?
Но уже очевидно: двигаясь по этой линии улучшения объяснений жизни (включая тем самым и объяснение болезней) можно надеяться на достаточный объем знаний для получения людьми биологического бессмертия. А дальше уже понятно, что можно будет менять и саму природу человека, почему бы и нет! Для этого не хватает знаний, а их получение – то же бесконечное развитие.
Существование звёзд-квазаров тоже было абсолютно неочевидно, но объяснение того, что с ними происходит, было невозможно в рамках ньютоновской физики. Появилась эйнштейновская физика, которая разбирается с искривлениями пространства-времени в присутствии больших масс, и она решила много космологических загадок. Квантовая физика по историческим меркам появилась очень недавно, но она уже объяснила многое из происходящего на другом конце спектра размеров – поведение фотонов управляется её законами. А дальше? Бесконечное развитие: остаётся проблема квантовой гравитации. Поиск новых научных проблем и последующее их решение, приводящее к постановке новых проблем, будет вечным. Мы исторически находимся в самом начале этого бесконечного развития, наука ещё очень и очень молода, если рассматривать её существование во вселенском масштабе времени.
Книжка Давида Дойча о бесконечном росте знания, бесконечном росте человечества так и называется «Начало бесконечности. Объяснения, которые меняют мир»62.
Эта книжка подробно объясняет, как устроена современная наука. Она вводит понятие рационального (а не слепого!) оптимизма, понимаемого как «всё зло объясняется недостатком знаний». Если не мешать предлагать новое знание и критиковать старое так, что в области знаний SoTA постоянно меняется, можно постепенно преодолевать зло. При этом будет меняться и понимание зла, и понимание того, каких знаний недостаёт, и понимание того, что такое объяснения. Оптимизм в том, что рост знаний будет делать жизнь лучше, и мы в начале бесконечного роста знаний: оптимизм в том, что почти все неблагоприятные исходы и почти все благоприятные у нас еще впереди, мы как человечество находимся в самом начале бесконечного роста знаний. Нужно только не мешать этим знаниям расти, для этого поддерживать выдвижение новых и новых универсальных объяснений, получение новой и новой критики этих объяснений.
Неопровергнутые лучшие объяснения на каждый момент составляют SoTA науки, лучшее известное на сегодня научное знание. Оно будет бесконечно расти, давая при этом бесконечное число способов бороться со злом: смертью, болезнями, несправедливостью, глупостью и всем остальным, что только можно представить плохого.
Тем самым лучшее на сегодняшний день понимание науки основано на двух идеях:
1. Эволюционной эпистемологии (научное знание/episteme развивается в ходе бесконечной/open-endedness эволюции, непрерывного выдвижения новых идей).
2. Критического рационализма (имеющееся знание критикуется на основе принципов рационального, то есть основанного на логике, следующего каким-то правилам, а не произвольного рассуждения, и эти рассуждения проверяются ещё и экспериментами в физическом мире, а не только мыслительными экспериментами).
Пользуемся тем знанием, которое лучше другого знания прошло критику: оно рационально. Но поскольку время от времени выдвигаются новые идеи, которые трудней критиковать, чем предыдущие идеи, переходим к использованию нового знания: оно эволюционно.
Похожим образом устроена не только наука. Бесконечное развитие и критика пронизывает всю жизнь – и искусство, и инженерию, и бизнес, и науку, и даже политическое устройство общества.