Первым пунктом повестки дня было сообщение манчестерского импортера фруктов о редкой змее, которую он нашел в партии бананов с Ямайки. Змею он продемонстрировал[211]. Затем настала очередь Резерфорда. Сохранилась лишь аннотация его выступления, но Чедвик вспоминает, что он чувствовал, слушая его: «Для нас, совсем молодых, это выступление было совершенно потрясающим… Мы понимали, что эта идея явно истинна, что это и есть подлинная суть»[212].
Резерфорд нашел в атоме ядро. Пока что он не знал, как располагаются электроны атома. На собрании в Манчестере он говорил о том, что «…атом, по предположению, состоит из центрального ядра, окруженного зарядом противоположного знака, равномерно распределенным внутри сферы радиуса R…»[213][214]. Эта формулировка была достаточно обобщенной для расчетов, но не учитывала того существенного физического факта, что «противоположный электрический заряд» должен быть воплощен в электронах. Они должны каким-то образом располагаться вокруг ядра.
Здесь мы встречаемся еще с одной загадкой. В 1903 году японский физик-теоретик Хантаро Нагаока предложил «сатурнианскую» модель атома, в которой вокруг «положительно заряженной частицы» вращаются плоские кольца электронов, подобные кольцам Сатурна[215]. Нагаока приспособил для своей модели математический аппарат, взятый из первой статьи Джеймса Клерка Максвелла, опубликованной в 1859 году и принесшей ему триумфальный успех; она называлась «Об устойчивости движения колец Сатурна». Все биографы Резерфорда согласны в том, что Резерфорд узнал о статье Нагаоки только 11 марта 1911 года – после манчестерского собрания, – когда он прочитал о ней в открытке, присланной другом-физиком: «Кэмпбелл сказал мне, что Нагаока когда-то пытался предположить наличие в атоме большого положительного центра, чтобы объяснить оптические эффекты»[216]. Затем он нашел эту статью в журнале Philosophical Magazine и добавил ее обсуждение на последнюю страницу своей развернутой статьи под названием «Рассеяние α- и β-частиц веществом и строение атома», которую отправил в тот же журнал в апреле. В этой статье он писал: «Интересно отметить, что Нагаока математически рассмотрел атом “Сатурния”, который, по его предположению, состоит из центральной притягивающей массы, окруженной кольцами вращающихся электронов»[217][218].
По-видимому, однако, Нагаока был у него незадолго до этого, так как 22 февраля 1911 года японский физик писал Резерфорду из Токио, благодаря его «за тот чрезвычайно теплый прием, который Вы оказали мне в Манчестере»[219]. Однако два физика, видимо, не обсуждали атомные модели; иначе Нагаока, вероятно, продолжил бы такое обсуждение в своем письме, а Резерфорд, бывший человеком абсолютно честным, несомненно упомянул бы об этом в своей статье.
Одна из причин, по которым Резерфорд не знал о сатурнианской модели атома Нагаоки, состоит в том, что модель эта подверглась резкой критике и была отвергнута вскоре после того, как Нагаока ее предложил. Дело в том, что в ней был один крупный недостаток – тот самый теоретический дефект, который оставался и в модели атома, предложенной теперь Резерфордом[220]. Кольца Сатурна устойчивы, потому что сила, действующая между составляющими их обломочными частицами – гравитация, – создает притяжение. Однако сила, действующая между электронами сатурнианских электронных колец Нагаоки, то есть между отрицательными электрическими зарядами, – создает отталкивание. Из этого математически следует, что при наличии двух или более электронов, равномерно распределенных по орбите вращения вокруг ядра, они должны приобрести колебательные моды – неустойчивые состояния, – которые быстро приведут к распаду атома.
То, что было справедливо для сатурнианского атома Нагаоки, теоретически должно было быть справедливо и для того атома, который Резерфорд обнаружил опытным путем. Если в атоме действуют механические законы классической физики, те Ньютоновы законы, которые управляют отношениями тел в планетарных системах, то модель Резерфорда работать не может. Но модель эта не была обычным теоретическим построением. Она была получена в результате физического эксперимента. И она явно работала. Атом оставался устойчивым сколь угодно долгое время и отражал альфа-частицы как артиллерийские снаряды.
Кто-то должен был разрешить это противоречие между классической физикой и экспериментально изученным атомом Резерфорда. Для этого нужен был человек, отличный от Резерфорда: не экспериментатор, а теоретик, но теоретик, тесно связанный с реальностью. Нужно было, чтобы он обладал по меньшей мере не меньшей отвагой, чем Резерфорд, и такой же уверенностью в своей правоте. Нужно было, чтобы он был готов пройти сквозь зеркало механики в неизведанный немеханический мир, в котором происходящее на атомном уровне уже нельзя было моделировать при помощи аналогий с планетами и маятниками.
И именно такой человек, как будто специально вызванный для этого дела, внезапно появился в Манчестере. 18 марта 1912 года Резерфорд объявил о его прибытии в письме к одному американскому другу: «Датчанин Бор ушел из Кембриджа и явился сюда, чтобы набраться опыта работы с радиоактивностью»[221]. Этим датчанином был физик-теоретик Нильс Хенрик Давид Бор. Ему было двадцать семь лет.
3
«TVI»[222]
«В комнату вошел некрепкий с виду юноша, – вспоминает манчестерские дни коллега Резерфорда по Университету Макгилла и его биограф А. С. Ив, – которого Резерфорд сразу же увел в свой кабинет. Миссис Резерфорд объяснила мне, что этот гость – молодой датчанин, и ее муж чрезвычайно высокого мнения о его работе. Это и неудивительно, ведь это был Нильс Бор!»[223] Это воспоминание кажется странным. Бор был выдающимся спортсменом. Его футбольные подвиги студенческих времен были широко известны в Дании. Он бегал на лыжах, ездил на велосипеде и ходил под парусом; он колол дрова; никто не мог обыграть его в пинг-понг; поднимаясь по лестнице, он то и дело перескакивал через ступеньки. Его внешность также была впечатляющей: он был высок по меркам своего поколения и имел, как говорит Ч. П. Сноу, «огромную куполообразную голову»[224], вытянутую, тяжелую челюсть и большие руки. В молодости он был тоньше, и копна его непослушных, зачесанных назад волос могла показаться человеку в возрасте Ива, который был на двенадцать лет старше Резерфорда, мальчишеской. Но Нильса Бора вряд ли можно было назвать «некрепким с виду».
Помимо внешнего вида Бора, противоречащие остальным воспоминания Ива вызваны еще чем-то – вероятно, его манерой держаться, которая иногда могла быть неуверенной. Он был «гораздо сильнее и спортивнее, чем можно было предположить по его осторожному поведению, – подтверждает Сноу. – К тому же говорил он очень тихо, почти что шепотом». В течение всей своей жизни Бор говорил так тихо – и в то же время неутомимо, – что его собеседникам все время приходилось напрягать слух. Сноу называл его «оратором, который так же долго добирался до сути, как Генри Джеймс в последние годы своей жизни»[225], но его речь бывала чрезвычайно разной в публичных выступлениях и частных беседах, а также при исходном обсуждении какой-нибудь новой темы и при изложении предметов, уже хорошо освоенных. По словам Оскара Клейна, бывшего сперва учеником, а затем и сотрудником Бора, в публичных выступлениях «он старался самым тщательным образом как можно точнее формулировать все оттенки своих высказываний»[226]. Альберт Эйнштейн восхищался тем, как Бор «…излагает свое мнение так, точно постоянно движется на ощупь: он ничуть не похож на человека, знающего истину в последней инстанции»[227][228]. Но если в исследовательской фазе своих рассуждений Бор искал, продвигался на ощупь, то по мере освоения темы «его уверенность возрастала, и речь его становилась энергичной и наполнялась яркими образами»[229], – отмечал племянник Лизы Мейтнер, физик Отто Фриш. А в частных беседах, в кругу близких друзей, говорит Клейн, «он выражал свою точку зрения в решительных образах и сильных выражениях, как восхищенных, так и критических»[230]. Манеры Бора были такими же двойственными, как и его речь. Эйнштейн познакомился с Бором в Берлине весной 1920 года. «Нечасто в моей жизни, – писал он Бору впоследствии, – встречались люди, само присутствие которых доставляло мне такую радость, как ваше», а общему другу Паулю Эренфесту, австрийскому физику, работавшему в Лейдене, он признавался: «Я так же влюблен в него, как вы». Несмотря на такой энтузиазм, Эйнштейн не упустил возможности пристально понаблюдать за своим новым датским другом; его вердикт относительно Бора тридцатипятилетнего сходен с выводами, которые сделал Ив, когда тому было двадцать восемь: «Он похож на чрезвычайно чувствительного ребенка, который существует в нашем мире в состоянии, подобном своего рода трансу»[231]. При первой встрече с Бором – до того, как он начал говорить, – его удлиненное, тяжелое лицо показалось теоретику Абрахаму Пайсу чрезвычайно «мрачным», и его озадачило это мимолетное впечатление от человека, известного всем «своей неослабевающей оживленностью и теплой, солнечной улыбкой»[232].
Вклад Бора в физику XX века уступает разве что вкладу Эйнштейна. Ему суждено было стать беспрецедентно прозорливым физиком-политиком. Его самосознание – созданная тяжелым трудом индивидуальность и те эмоциональные ценности, которые были положены в ее основу, – было жизненно важным элементом его работы, в большей степени, чем это обычно свойственно ученым. В течение некоторого времени, в его юности, это самосознание было болезненно раздвоенным.
Его отец, Кристиан Бор, был профессором физиологии в Копенгагенском университете. У Кристиана Бора характерная для Боров челюсть выступала из-под густых усов; у него было круглое лицо и не такой высокий лоб. Возможно, он тоже был спортсменом; во всяком случае, он увлекался спортом и участвовал – организационно и финансово – в создании «Академического футбольного клуба», в составе команды которого его сыновья становились потом чемпионами по футболу (младший брат Нильса Харальд участвовал в Олимпиаде 1908 года)[233]. Он придерживался прогрессивных политических взглядов и выступал за эмансипацию женщин; к религии он относился скептически, но формально соблюдал требуемые ритуалы – то есть был добропорядочным буржуазным интеллигентом.
Кристиан Бор опубликовал свою первую научную работу в двадцать два года[234], получил диплом врача, а затем защитил докторскую диссертацию по физиологии и учился в Лейпциге у известного физиолога Карла Людвига. Он специализировался по вопросам дыхания и ввел в эту область исследований методику точных физических и химических экспериментов, что было редкостью для начала 1880-х годов. Вне стен лаборатории, как рассказывает один из его друзей, он был «пылким поклонником»[235] Гёте; его также интересовали более глобальные философские вопросы.
Одной из наиболее острых дискуссий этих дней был спор между виталистами и механицистами, очередное проявление старой и никогда не прекращающейся битвы между теми, кто верит, в том числе исходя из религиозных убеждений, что мир имеет предназначение, и теми, кто считает, что он работает автоматическим и случайным образом или по повторяющимся и неизменным циклам. Немецкий химик, презрительно отзывавшийся в 1895 году о «чисто механическом мире естественно-научного материализма», в котором бабочка может снова превратиться в гусеницу, имел в виду тот же самый вопрос, восходящий еще ко временам Аристотеля.
В той области, в которой был специалистом Кристиан Бор, эта проблема возникла в виде вопроса о том, были ли организмы и их подсистемы – их глаза, их легкие – созданы с заранее заданной целью, или же они возникли в соответствии со слепыми и бездушными законами химии и эволюции. Самым радикальным сторонником механистической точки зрения в биологии был немец Эрнст Генрих Геккель, утверждавший, что органическая и неорганическая материя – это одно и то же. Жизнь возникла самопроизвольно, утверждал Геккель; психологию следует считать разделом физиологии; не существует ни бессмертной души, ни свободы воли. Несмотря на свою приверженность к научным экспериментам, Кристиан Бор не принял точку зрения Геккеля; возможно, в этом сыграло свою роль его увлечение Гёте. После этого ему предстояла трудная работа по приведению своей практической деятельности в соответствие с этими взглядами.
Отчасти поэтому, а отчасти из любви к обществу друзей он стал встречаться в кафе с философом Харальдом Гёффдингом – их дискуссии проходили после регулярных пятничных заседаний Датской королевской академии наук и литературы, членами которой были оба. Друживший с ними физик К. Кристиансен, бывший в детстве пастухом, вскоре привнес в эти споры третью точку зрения. Из кафе встречи переместились в дома участников, которые они посещали по очереди. Следующим членом группы стал филолог Вильгельм Томсен, который и завершил формирование этой великолепной четверки, состоявшей из физика, биолога, филолога и философа. Нильс и Харальд Боры провели все свое детство, слушая их беседы.
Поскольку к делу женской эмансипации Кристиан Бор относился столь же серьезно, он вел подготовительные курсы для женщин, поступавших в университет. Одной из его учениц была дочь еврейского банкира Эллен Адлер. Она происходила из образованной, состоятельной и известной в Дании семьи; ее отец в разное время был депутатом обеих палат датского парламента. Кристиан Бор стал за ней ухаживать; в 1881 году они поженились. Как говорит один из друзей их сыновей, она отличалась «очаровательным характером»[236] и огромным альтруизмом. Судя по всему, после замужества она не афишировала своего иудаизма. Поступление в университет, которое она, видимо, планировала исходно, также не состоялось.
Кристиан и Эллен Бор начали свою семейную жизнь в городском доме семьи Адлер, стоявшем прямо напротив дворца Кристианборг, в котором заседал парламент, на противоположной стороне широкой улицы. В этом приятном месте 7 октября 1885 года и родился Нильс Бор, их второй ребенок и первый сын. В 1886 году, когда его отец принял должность в университете, семья Бор переехала в дом, расположенный рядом с Хирургической академией, в которой находились физиологические лаборатории. Там вырос и Нильс, и его брат Харальд, бывший младше его на девятнадцать месяцев.
Насколько Нильс Бор помнил, ему всегда нравилось мечтать о великих взаимосвязях[237]. Его отец любил говорить парадоксами[238]; возможно, из этой привычки отца и происходили мечты Нильса. В то же время мальчик отличался глубоко буквальным мышлением, и эта черта, которую часто считают недостатком, стала основополагающим достоинством Бора-физика. Гуляя с ним, когда ему было около трех лет, отец стал рассказывать ему об уравновешенном строении дерева – ствола, крупных и мелких ветвей, – как бы показывая сыну, как собрать дерево из его составных частей. Мальчик, склонный к буквальному мышлению, не был с ним согласен, так как видел в дереве цельный организм: иначе, сказал он, дерева не получилось бы. Бор рассказывал эту историю всю свою жизнь; в последний раз – всего за несколько дней до смерти, в 1962 году, когда ему было семьдесят восемь лет. «С самой ранней юности я мог высказываться по философским вопросам», – с гордостью заявил он. И благодаря этой способности, по его словам, «меня считали несколько необычным»[239].
Харальд Бор был мальчиком сообразительным, остроумным и энергичным, и сначала казалось, что он умнее брата. «Однако очень скоро, – говорит биограф Нильса Бора Стефан Розенталь, впоследствии работавший с ним, – Кристиан Бор сменил точку зрения на противоположную; он осознал огромные способности и особые таланты Нильса, а также широту его воображения»[240]. То, как отец сформулировал это открытие, могло бы показаться бессердечным сравнением, если бы братья так не любили друг друга. Нильс, сказал он, – «особый член семьи»[241].
В пятом классе, когда Нильс получил задание нарисовать дом, он выполнил замечательно зрелый рисунок, но сперва пересчитал все штакетины забора. Он любил работать по дереву и металлу; с самого раннего возраста он стал настоящим домашним мастером. «Даже в детстве [его] считали в семье мыслителем, – говорит один из его младших сотрудников, – и отец прислушивался к его мнению по самым фундаментальным вопросам»[242]. Почти не вызывает сомнений, что он научился письму с большим трудом, и ему всегда было трудно писать. Мать верно служила ему секретарем: он диктовал ей свою домашнюю работу, а она ее записывала[243].