Типовые электрические схемы распределительных устройств электростанций и подстанций. Характеристики. Применение. Оперативные переключения - Марков Владимир Сергеевич 2 стр.


Надежность– свойство объекта выполнять заданные функции в заданном объеме при определенных условиях функционирования. Уровень надежности может быть регламентирован или экономически обоснован. Требования к надежности схем РУ в основных и распределительных сетях различаются. Так, при расчетных отказах в первых из них критерием допустимости значения одновременного сброса мощности из-за отказов элементов схем является сохранение устойчивости генерирующих источников в энергосистеме, в том числе статической апериодической устойчивости, а также предотвращение недопустимых токовых перегрузок электрооборудования. В свою очередь для схем РУ в распределительных сетях одно из первостепенных значений приобретает обеспечение электроснабжения потребителей в соответствии с их категорийностью, регламентированной нормативными документами.

Экономичность      подразумевает      принятие      решений      с      учетом необходимых капитальных вложений и сопутствующих ежегодных издержек производства и сбыта продукции. Принимаемый уровень надежности обосновывается сопоставлением затрат на его повышение с экономическими последствиями из-за ненадежности (например, с ущербом или штрафными санкциями) при расчетных отказах элементов схем. При анализе режимов следует учитывать параметры электросетевого и генерирующего оборудования, а также возможность применения противоаварийного управления. Выбор схемы РУ должен быть произведен на основании технико-экономических показателей, учитывающих затраты на его сооружение и эксплуатацию и экономические последствия, вызванные аварийными возмущениями. При этом показатели надежности элементов схемы РУ должны быть приняты на основании опыта эксплуатации или в соответствие со стандартами организации.

Удобство эксплуатации заключается в наглядности и простоте схем, снижающих вероятность ошибочных действий персонала, возможности минимизации количества переключений при изменении режима применительно как к первичным, так и вторичным цепям, в обеспечении соответствия режимов работы электроустановки и энергосистемы.

Техническая гибкость– способность адаптироваться к изменяющимся условиям работы электроустановки при плановых и аварийно-восстановительных ремонтах, расширении, реконструкции и испытаниях.

Экологическая чистота определяется степенью воздействия электроустановки на окружающую среду, как-то: шум, электрические и магнитные поля, загрязнение выбросами и отходами, нарушение ландшафта и пр.

Компактность характеризуется возможностью минимизации площади земли, отчуждаемой под РУ. Это позволяет наиболее рационально решать проблему приобретения земельных участков, которая при обосновании и выборе схем электроустановок нередко является определяющей.

Унифицированность заключается в применении ограниченного числа типовых схем. Использование типовых решений позволяет снижать материальные и финансовые затраты на      проектирование, монтаж, пуско-наладку и эксплуатацию электроустановки.

Удобство эксплуатации, техническую гибкость и экологическую чистоту следует также рассматривать в контексте соответствующих нормативов безопасности персонала и предельно допустимых параметров воздействия электроустановки на окружающую среду. Техническое решение должно обеспечивать требуемое качество электроэнергии и обеспечивать работу РУ при расчетных значениях токов короткого замыкания. Схемы РУ должны предусматривать вывод выключателей и отделителей в ремонт, осуществляемый:

–для всех схем РУ напряжением 6-35 кВ, а также для блочных и мостиковых схем РУ напряжением 110, 220 кВ (за исключением цепи, по которой осуществляется транзит мощности) – путем временного отключения цепи, в которой установлен ремонтируемый аппарат;

–для мостиковых схем РУ напряжением 35-220 кВ – путем применения ремонтных перемычек, за исключением случаев, когда перемычки отсутствуют;

–для схем со сборными шинами РУ напряжением 110, 220 кВ – путем применения обходных выключателей, за исключением случаев, когда обходная система шин отсутствует;

–для схем РУ напряжением 6-220 кВ – путем установки подменного выключателя, если применяется такой тип выключателя (схемы с выкатными выключателями, КРУЭ);

–для схем РУ напряжением 330-750 кВ (кроме схем блоков 330,500 кВ), а также 110-220 кВ по схеме четырехугольника – отключением выключателя без отключения присоединения.

Число одновременно срабатывающих выключателей в пределах РУ одного напряжения должно быть не более:

–при повреждении линии – двух;

–при повреждении трансформаторов напряжением до 500 кВ – четырех;

–при повреждении трансформаторов напряжением 750 кВ – трех.

Схемы с отделителями допустимо использовать в электрических сетях только на напряжении 110 кВ в том случае, когда владелец объекта не может обеспечить укомплектование РУ требуемым количеством выключателей. Их недопустимо применять в следующих случаях:

–в РУ, расположенных в зонах холодного климата, а также в особо гололедных районах;

–в районах с сейсмичностью более 6 баллов по шкале МSК-64;

–когда действие отделителей и короткозамыкателей приводит к выпадению из синхронизма синхронных двигателей у потребителя или нарушению технологических процессов;

–для присоединения трансформаторов мощностью более 25 МBA;

–в цепях трансформаторов, присоединенных к линиям, имеющим ОАПВ.

В схемах без выключателей в цепях трансформаторов для обеспечения отключения головного выключателя питающей линии при повреждении трансформатора применяются следующие решения:

–короткозамыкатели в одной фазе – для сетей 110 кВ;

–передача сигнала на отключение выключателя с применением устройства телеотключения или по кабелям.

Применение передачи отключающего сигнала должно иметь технико-экономическое обоснование. При этом в целях резервирования для РУ напряжением 110 кВ допускается установка короткозамыкателя.

1.3. Принципы выполнения схем распределительных устройств

Изучая схемы РУ, необходимо понять общие принципы их выполнения. Важнейшими из них являются:

–схемы РУ (кроме некоторых блочных схем) формируются из комплектов оборудования электроаппаратов, в которые входят: один выключатель, два разъединителя и один или несколько трансформатор тока;

–основными элементами схемы РУ являются силовые выключатели. Они предназначены для коммутаций цепей при протекании по ним токов эксплуатационных режимов и режимов КЗ. При отказе оборудования отключается один или несколько ближайших к нему выключателя;

–самыми многочисленными электроаппаратами РУ являются разъединители; они предназначены для создания видимых разрывов цепи предварительно отключенной выключателем или надежно шунтированной другими коммутационными аппаратами; при выводе в ремонт отключаются ближайшие к ремонтируемому оборудованию разъединители, что позволяет максимально сократить зону отключения;

–на разъединителях есть специальные контакты (ножи), связанные с одной стороны с заземляющим устройством ОЭС, и конкретной точкой РУ, с другой стороны. Они необходимы для создания так называемого стационарного заземления части электроустановки и обеспечения дополнительной безопасности ремонтного персонала; между основными и заземляющими контактами разъединителей есть разного рода блокировки, препятствующие включению заземляющих ножей при включенных основных контактах и наоборот включение основных контактов при включенных заземляющих ножах;

–секционирование (деление) системы шин осуществляется комплектом оборудования, в который входят так называемый секционный выключатель (СВ), трансформатор тока и два разъединителя (рис.5.1); при выполнении дифференциальных релейных защит секций устанавливаются, как правило, два трансформатора тока;

– в некоторых цепях, например, перемычках, последовательно (рядом) устанавливаются два разъединителя, что позволяет выводить в ремонт любой из них, создавая видимый разрыв на другом, сохраняя большую часть электроустановки в работе;

– в кольцевых схемах РУ (рис.4.1-4.3) число комплектов оборудования равно числу присоединений;

–в полуторные цепочки РУ (рис 6.1) подключаются по два присоединения к трем комплектам электроаппаратов, в вертикальные цепочки, состоящие из четырех выключателей. подключаются по три присоединения.

1.4. Основные правила выполнения оперативных переключений

Вывод любого электрооборудования в ремонт предусматривает отключение ремонтируемого элемента от источников питания, выделение его из схемы путём создания видимого разрыва (на разъединителях или отделителях) в точках, максимально приближенных к месту выполнения работ, а также заземления части электроустановки со всех сторон, откуда может быть подано напряжение к месту выполнения работ. Операции на разъединителях могут выполняться после отключения цепей выключателями и отсутствии тока в цепи. Если до или после коммутации разъединителя по нему протекает ток, то отключение или включение разъединителя допустимо при наличии шунтирующей разъединитель цепи. Например, в схеме мостика, приведенной на рис. 3.3, допускается включение или отключение разъединителей в перемычке (QS5 или QS6) при включенных разъединителях QS7 – QS10 и выключателе Q3.

При ремонтах секций или систем шин РУ от него должны быть отключены все присоединения и созданы соответствующие видимые разрывы цепи. При наличии в РУ нескольких (двух) систем шин присоединение может быть временно переведено с одной на другую систему шин. Обязательным условием безопасного перевода присоединения с одной системы шин на другую является равенство напряжения на этих системах шин. Для выполнения этого условия в момент перевода присоединения между системами шин должна быть цепь связи через так называемый шиносоединительный выключатель (ШСВ) или разъединитель (пару разъединителей какого-либо присоединения).

При проведении ремонтов должно быть организовано заземление части электроустановки со всех сторон, откуда может быть подано (даже ошибочно) напряжение на выводимое в ремонт оборудование. Исключение относится к сборным шинам РУ. Для них должно быть предусмотрено стационарное заземление, как правило, в двух разных точках РУ независимо от количества подключаемых присоединений.

В схемах РУ с обходной системой шин (ОСШ) (рис. 5.8, 5.9, 5.10 и 5.12-5.14) присоединение на нее переводится при ремонтах основного (единственного) выключателя линии или трансформатора. Напряжение на ОСШ подается с рабочих систем или секций сборных шин через обходной выключатель (ОВ), который выполняет функцию выключателя присоединения на время ремонта его основного выключателя.

До включения или отключения разъединителей в ОРУ должна быть выполнена проверка состояния колонок его изоляторов. Эти действия необходимы для предотвращения поломки разъединителя во время выполнения его коммутации и повышения безопасности оперативного персонала (ОП). В приведенных примерах эта процедура не обозначается.

Для предотвращения самопроизвольного изменения состояния контактов выключателя предусматривается такая процедура, как снятие оперативного тока (ОТ) с привода выключателя. После снятия оперативного тока контакты аппарата практически не могут изменить то состояние, в котором они находились до снятия оперативного тока. Необходимость проверки по месту установки включенного/отключенного положения выключателя после снятия (подачи) ОТ с устройств управления его привода оговаривается в [2,9]. Эта процедура предусмотрена для дополнительной страховки ОП, выполняющего переключения.

Перед отключением или включением намагничивающих токов силовых трансформаторов 110-220 кВ (трансформаторы на холостом ходу), работающих с разземленной нейтралью, необходимо заземлить их нейтрали разъединителем нейтрали (ЗОН). До отключения выключателей воздушных линий при выводе ЛЭП в ремонт (резерв) необходимость вывода устройство автоматического повторного включения (АПВ) в зависимости от их схемы и конструкции определяется указаниями инструкций по РЗ и А. В примерах циклов оперативных переключений вывода в ремонт и ввода в работу главных трансформаторов на двухтрансформаторных подстанциях с двумя напряжениями рассмотрены режимы эксплуатации оборудования, соответствующие требованиям «Норм технологического проектирования подстанций переменного тока напряжением 35-750 кВ» [5]. Трансформаторы работают раздельно на стороне 6,10,35 кВ для уменьшения токов короткого замыкания в этих РУ и связанной с ним сети. Секционный выключатель в РУ этих напряжений в нормальных условиях отключен. Возможно включение этого выключателя от АВР при отключении любого трансформатора его РЗ. Трансформаторы имеют устройства автоматического регулирования напряжения (АРНТ) и устройства регулирования напряжения под нагрузкой (РПН).

При вводе оборудования в работу необходимо:

– снять заземление, установленное до ремонта и во время его;

– устранить видимые разрывы цепей;

– подать напряжение (проверить исправное состояние);

– включить соответствующие цепи.

Действия персонала могут приводить к достижению одновременно нескольких целей: отключению цепи и снятию напряжения, созданию видимого разрыва и снятию напряжения, отключению цепи и созданию видимого разрыва и т.д.

В разделах 2-6 рассмотрены примеры циклов оперативных переключений без указания некоторых процедур, выполняемых в реальных условиях, а именно:

–проверки состояния колонок изоляторов (СКИ) разъединителей и отделителей до их включения или отключения,

–вывода из работы/ввода в работу устройства автоматического повторного включения (АПВ) линий электропередач, устройства автоматического ввода резервного питания (АВР),

–включения/отключения заземляющего ножа в нейтрали обмотки трансформатора 110-220 кВ,

–дистанционного выравнивания напряжения на секциях РУ до включения силовых трансформаторов на параллельную работу,

– снятия оперативного тока с привода выключателя, проверки включенного/отключенного положения выключателя и т.д.

То, какие именно процедуры не упоминаются в конкретных примерах, зависит от их важности в соответствующих циклах переключений.

В разделе 7 приведены примеры циклов оперативных переключений, в которых указаны практически все действия персонала при выводе оборудования в ремонт (резерв). Эти примеры взяты из приложения к Приказу Министерства энергетики Российской Федерации от 13 сентября 2018 г. № 757 об утверждении правил переключений в электроустановках [9].

В приложении к основному тексту приводятся паспорта наиболее часто используемых типовых схем РУ: «Мостик с выключателями в цепях линий и ремонтной перемычкой со стороны линий», «Две рабочие и обходная системы сборных шин. Взяты автором из [4]. В паспортах указываются основные свойства схемы РУ: её номер, область использования, степень удовлетворения важнейшим требованиям, схемы, к которым допускается переход в перспективе, данные об устанавливаемом оборудовании и т.д.

Назад Дальше