«Случаи, когда людей выбрасывало из шахт, – пишет Роберт Галлоуэй, горный инженер Викторианской эпохи, – в ранние времена часто и даже почти регулярно сопутствовали взрывам любой силы на угольных шахтах»[61]. Один из самых впечатляющих таких случаев произошел в 1675 г. на шахте Мостин в Уэльсе, находившейся на реке Ди к юго-востоку от Ливерпуля. В 1640 г., когда эта шахта только открылась, шахтеры разработали систему удаления рудничного газа в начале каждого рабочего дня: одного отправляли в шахту впереди прочих, и он нес длинный шест с пучком зажженных свечей на конце, чтобы выжечь скопившийся за ночь газ. Такого человека называли «пожарником». Для защиты от огня он надевал поверх одежды пропитанный водой холщовый балахон. «Когда пламя, возгоревшись, мчалось под сводами шахты, – пишет Галлоуэй, – “пожарник” кидался на землю, лежал распростершись и ждал, пока огонь пройдет над ним»[62]. Днем шахту вентилировали, не давая метану скапливаться, а на следующее утро «пожарник» снова принимался за свою опасную подрывную работу.
К 1675 г. шахта Мостин разрабатывалась уже более трех десятилетий. Затем ее владельцы решили проложить новый шурф к параллельному угольному пласту, залегавшему ниже. Этот пятнадцатиметровый «слепой ствол», или гезенк, заполнился рудничным газом. При его поджоге, сообщает Галлоуэй, произошел взрыв «столь сильный, что это вызывало чувство немалой обеспокоенности»[63]. Но худшее ждало впереди.
Работы остановили на трое суток, после чего управляющий спустился к устью шахты, пытаясь придумать, как прогнать сквозь шахту достаточно воздуха и тем самым очистить ее от газа. Он взял с собой двух шахтеров. За ними пошли те, кто выкопал новый шурф. «Один из них, – говорится в отчете того времени, – бывший беспечнее других, прошел со своей свечой прямо над устьем шурфа, заполненного газами, отчего те немедленно воспламенились и хлынули по всем пустотам шахты, создав сильнейший ветер, непрерывно горевшее пламя и вместе с этим чудовищный рев». Шахтеры пытались укрыться в шламе, которым был засыпан пол, или за деревянными опорами, поддерживавшими своды. Рокочущая огненная волна прокатилась по шахте до самого конца, отразилась и с ревом ринулась обратно: «Она приблизилась, накатила с невероятной силой; ветер и пламя содрали почти всю одежду с их спин, опалили то, что осталось, обожгли волосы, лица, руки; удар от взрыва был столь силен, что иссек кожу так, будто их били розгами». Шахтеров, не сумевших укрыться, разметало по туннелю шахты, ударяя о свод, швыряя на опоры, лишая чувств[64].
Один из шахтеров, застигнутый взрывом, стоял рядом с устьем верхней шахты. Волна подхватила его, с ревом помчалась вверх по стволу, вырвалась из устья с грохотом артиллерийской канонады, и шахтер взлетел выше самых высоких деревьев – вернее, уже не шахтер, а его тело. Можно сказать, шахта выстрелила несчастным, словно пушечным ядром.
Но сложнее всего в ту раннюю эпоху добычи угля оказалось другое: отводить из шахт воду. Дождевые потоки стекают в ручейки, те впадают в ручьи побольше, ручьи питают реки, и вся эта вода, направляемая силой тяжести, непрестанно стремится все ниже и ниже – к морям. Около трети воды, выпавшей при любом дожде, впитывается в почву и просачивается вглубь земли. Рано или поздно эта вода встречает непроницаемые слои скальной породы. Она растекается по ним и течет вдоль скального пласта, находя трещины или проницаемые породы, и через них проникает дальше, до очередного водонепроницаемого пласта. Она просачивается, процеживается, растекается все шире, насыщает проницаемую породу и образует подземное водохранилище – водоносный слой. Чтобы построить колодец, нужно выкопать скважину достаточно глубокую, способную пройти под поверхность такого водоносного слоя: колодец наполнится до уровня этой поверхности – горизонта грунтовых вод – и будет наполняться заново при каждом заборе воды.
Шахты, расположенные на возвышенностях, могли осушать при помощи штолен. Но поверхностные угольные пласты истощались, отчего владельцы шахт вскрывали другие – более глубокие, уходящие под водоносные горизонты. И если такую шахту затапливало, требовалось либо откачивать воду, либо просто все бросать. Их и бросали, довольно часто, а потому технологии, которые позволили бы осушать такие шахты и поддерживать отвод воды для выработки угля, становились все желаннее. Галлоуэй называл отвод воды из шахт «величайшей инженерной задачей эпохи»[65].
Откачивать воду ветряными мельницами не получалось: английская погода славилась своей непредсказуемостью. Водяные колеса работали там, где хватало воды, но мощность потоков, как правило, изменялась со сменой времен года. К тому же лишь немногие затопленные шахты находились вблизи достаточно крупных рек. Сначала владельцы шахт запрягали лошадей в вороты – приподнятые над землей горизонтальные барабаны размером с колесо водяной мельницы: животные вращали их, ходя по кругу, и вращение ворота наматывало и разматывало крепкую веревку, проходившую через шкив в ствол шахты.
Конными воротами из шахты поднимали не только ведра с водой, но и корзины с углем. Правда, Галлоуэй говорит, что такая система давала мало, а стоила дорого: лошадей требовалось или покупать, или разводить, а значит – растить, кормить, содержать. «В некоторых случаях для подъема воды из одной-единственной угольной шахты использовалось целых пятьдесят лошадей», – что, по оценке Галлоуэя, стоило не менее 900 фунтов стерлингов в год (113600 фунтов, или 169000 долларов, в нынешних деньгах). Более глубокие шахты, которые не удавалось осушить при помощи одной только конной тяги, приходилось забрасывать. Затопленные шахты, потерянные средства, напрасные труды – все это открывало простор для изобретений.
Конный ворот. Источник неизвестен.
Почву для них подготовили научные открытия. О том, что атмосфера имеет вес, знали со времен опытов, поставленных в 1643 г. Эванджелистой Торричелли, учеником Галилея. Опыты Торричелли привели к изобретению ртутного барометра, который реагирует на смену атмосферного давления – то есть изменения плотности воздушного столба, расположенного над прибором. В 1654 г. прусский инженер Отто фон Герике продемонстрировал силу атмосферного давления в знаменитом эксперименте, публично поставленном в Регенсбурге в присутствии императора Фердинанда III. Фон Герике соединил два медных полушария в сферу, откачал из нее воздух и поместил ее между двух упряжек, в каждую из которых запрягли по восемь лошадей. Хотя полусферы прижимались друг к другу только силой атмосферного давления, конные упряжки так и не смогли разъединить их, как ни старались.
Отто фон Герике демонстрирует давление воздуха на вакуум
Друг фон Герике, математик-иезуит Каспар Шотт, включил отчет об этом событии (и впечатляющую гравюру, изображающую его) в книгу, которую опубликовал в 1657 г. В Англии об опытах, устроенных фон Герике, и о демонстрации прочел состоятельный ирландский натурфилософ[66] Роберт Бойль, сын графа Коркского, пытавшийся в это же самое время придумать, как создать вакуум в более крупном масштабе, нежели позволяла узкая стеклянная трубка барометра Торричелли[67]. Демонстрация фон Герике впечатлила Бойля, в отличие от лабораторной вакуумной системы. Фон Герике создавал вакуум в лаборатории, откачивая воздух из сосуда, установленного вверх дном в чаше с водой. Бойль хотел экспериментировать с вакуумом – например, посмотреть, что случится с горящей свечой, заключенной в вакуумный сосуд, по мере откачки воздуха, – а как это сделать, если в сосуд приходится проникать из-под воды?
Первый воздушный насос Гука и Бойля. Вынув пробку К, расположенную в верхней точке сферы, в сферу через отверстие помещают исследуемые материалы. Затем, снова закрыв пробку, вращением рычага отводят поршень С вниз по цилиндру А, откачивая из сферы воздух. Клапан L закрывают, что не позволяет воздуху опять заполнить сферу, и снова вращают рычаг в обратном направлении, продвигая поршень вверх. Когда поршень полностью войдет в цилиндр, клапан L вновь открывают, что позволяет откачать из сферы следующую порцию воздуха, постепенно увеличивая разрежение в ней
Хотя Бойль жил к тому времени в Оксфорде, он обратился к известному лондонскому производителю приборов Ральфу Грейтрексу и заказал работоспособный воздушный насос. Грейтрекс с заказом не справился. А потом один из оксфордских преподавателей химии представил Бойлю своего ассистента: молодого, но изобретательного Роберта Гука; тому в 1658 г. исполнилось двадцать три. Бойль привлек Гука к своей работе, и после нескольких безуспешных попыток создать устройство по чужим проектам Гук взялся за проект сам – и его насос работал. Этот прибор первого поколения, медленный и негерметичный, позволил Бойлю начать эксперименты.
Насос Бойля и его последующие опыты с вакуумом не только показали, что вакуум можно создать, изучить и выявить его характерные свойства (в нем гаснут свечи; он проводит свет, но не звук). Они проявили и силу давления воздуха: вес атмосферы, находящейся над нами и вокруг нас в нашей повседневной жизни. «В воздухе, в котором мы живем, – писал Бойль, – есть пружинная, или упругая, сила»[68]. Теперь возник следующий вопрос: как применить столь мощную силу в более крупном масштабе, вне лаборатории?
Эксперименты с использованием тепла для создания частичного вакуума проводились по меньшей мере с начала XVII в. В 1604 г. голландец Корнелиус Дреббель изобрел простой механизм, использующий огонь для откачки воды; впоследствии он привел его изображение в своей книге.
Устройство, описанное Дреббелем, состоит из реторты – металлического сосуда в форме тыквы, – подвешенной над огнем; горлышко реторты погружено в ведро с водой. Когда огонь нагревает реторту, содержащийся в ней воздух расширяется и выходит сквозь воду в виде пузырей. Если убрать огонь, то воздух, оставшийся в реторте, остывает, сжимается и создает частичный вакуум, – и тогда атмосферное давление внешней среды загоняет воду из ведра в горлышко реторты, скрытое под водой. Простой насос Дреббеля открывал широкие возможности. Его могли увеличить, доработать – и, скажем, качать им воду из рек, снабжая ею населенные пункты.
Дреббель, «статный мужчина с очень светлыми волосами… и человек весьма приятных манер»[69] – по описанию одного придворного, который с ним встречался, – изобрел еще много всего, от систем фонтанов до барометрического «вечного двигателя», демонстрации которого пользовались большим успехом у коронованных особ[70]. В 1605 г. он приехал в Лондон в качестве учителя Генриха Фредерика, принца Уэльского, старшего сына Якова I. Слава о его изобретательских талантах разошлась по всей Европе, и континентальные аристократы приезжали в Лондон только для того, чтобы увидеть его за работой. Когда Рудольф II, император Священной Римской империи, пригласил Дреббеля в Прагу, тому ничего не оставалось, как принять это приглашение, хотя сам он предпочел бы остаться в Англии. Но в 1612 г. Рудольф умер, и Дреббель уже никому не был ничем обязан. К несчастью, тогда же, в восемнадцать лет, умер от брюшного тифа и принц Уэльский. А через год Дреббель вернулся в Англию – на службу к Якову I.
Кое-кого забавляла поддержка, оказываемая Дреббелю королем Яковом I; «говорили, что этот вечный изобретатель так и не придумал ни одной вещи, польза от которой превышала бы ее стоимость». Одним из защитников голландского изобретателя был Константейн Гюйгенс, молодой голландский поэт и дипломат. Они с Дреббелем познакомились в Лондоне в 1621 г. Гюйгенс считал Дреббеля гением, равным великому англичанину Фрэнсису Бэкону. «При помощи глубочайших знаний, – восхвалял юный поэт своего соотечественника, – он создал замечательные механические устройства»[71].
Простой насос Дреббеля
Возможно, самым замечательным из них стала подводная лодка Дреббеля, первая в своем роде, – вытянутый водолазный колокол, который он продемонстрировал в 1620 г. на Темзе представителям Королевского флота. Дреббель взял гребную шлюпку, выбил из нее дно, оборудовал ее куполообразной деревянной палубой, герметизировал уключины и руль кожаными прокладками и покрыл всю лодку водонепроницаемой кожей. Лодка могла оставаться под водой по нескольку часов кряду, и есть основания полагать, что Дреббель знал, как химическим путем получать кислород из калийной селитры – нитрата калия – для восполнения в лодке запасов воздуха. Кислотный остаток нитратов (солей азотной кислоты) состоит из азота и кислорода[72].
Позднее в 1620-х гг. Дреббель изготавливал мины и ракеты для Королевского флота: корабли пытались прийти на помощь протестантам-гугенотам, осажденным французами в Ла-Рошели[73]. В конце этого же десятилетия у Гюйгенса родился сын Христиан, в будущем – один из величайших натурфилософов XVII столетия. Дреббель умер в 1633 г., но его дружба с отцом Христиана позволила изобретательному голландцу повлиять на развитие мальчика.
Подводная лодка Дреббеля на Темзе, 1620 г. Источник неизвестен.
Христиан Гюйгенс впервые получил известность как математик и астроном. Закончив Лейденский университет, где он изучал право и математику, в 1651 г., в двадцать два года, Гюйгенс опубликовал свою первую книгу по математике, посвященную задачам квадратуры – нахождению площади геометрических фигур, например круга. В 1650-х он научился шлифовать линзы и изобрел первый составной окуляр для телескопа, а в 1656 г. верно установил, что выступающие по бокам Сатурна «уши», которые видели прежде и другие астрономы, – это кольца. В том же году он изобрел маятниковые часы.
Эти и другие достижения подготовили почву для избрания этого блистательного молодого изобретателя первым директором недавно созданной Французской академии наук. Жан-Батист Кольбер, министр финансов в правительстве Людовика XIV, задумал ее по образцу британского Королевского общества. Академию учредили в 1666 г., и Кольбер надеялся, что та поспособствует получению знаний, которые можно будет использовать в промышленности для увеличения доходов короля. Гюйгенс кратко изложил свои планы только что назначенным членам академии в следующих словах:
Нет лучше темы для исследований и нет ничего полезнее, нежели узнавать, откуда происходят вес, тепло, холод, магнетизм, свет, цвета, составы воздуха, воды, огня и всей установленной материи, как дышат животные, как образуются металлы, камни и растения, – вот те предметы, о которых человек знает мало или не знает ничего[74].
В число практических технологий, разработку которых Гюйгенс считал целесообразной, он включил два возможных способа создания движущей силы: «Исследовать силу пороха, малая толика которого заключена в корпус из очень прочного железа или меди. Также исследовать силу воды, преобразуемой огнем в пар»[75].
В 1672 г. Гюйгенс продолжал исследовать порох. В те дни в Париж приехал двадцатишестилетний немецкий ученый-универсал Готфрид Лейбниц: он искал помощи Гюйгенса, чтобы усовершенствовать свои познания в математике. Гюйгенс согласился и поручил Лейбницу изучать квадратуры и вычислять значение числа π. В авантюре с «пороховой машиной», которой Гюйгенсу еще предстояло заняться в будущем, ему помогал и кое-кто еще: Дени Папен, врач, бывший на год младше Лейбница и оставивший медицину ради инженерного дела. Гюйгенс и Папен познакомились в 1671 г. в Версале, великолепном дворце Людовика XIV, расположенном в 20 км к юго-западу от Парижа, где молодой инженер обеспечивал работу системы ветряных насосов, подававших воду в фонтаны обширных дворцовых садов. Работа Папена так впечатлила Гюйгенса, что он предложил тому должность ассистента.