Сущность виртуальности. От конструкта к онтологическому статусу (Виртуальность мира и миры виртуальных реальностей) - Г.И. Тронина 6 стр.


Этапы эволюции биохимических систем А.В. Рыжков связывает с катализом:

1. на ранних стадиях катализ отсутствует. Высокие температуры и радиация дают энергию, необходимую для активизации химических взаимодействий;

2. при температуре менее 5000 К происходят первые проявления катализа. Далее роль катализаторов возрастает по мере того, как природные условия становились все менее экстремальными. Но общее значение катализа вплоть до образования достаточно сложных органических молекул еще не может быть высоким;

3. после достижения некоторого набора неорганических и органических соединений, роль катализа начинает резко возрастать. Набор активных соединений происходит в природе из тех продуктов, которые получились с относительно большим числом химических путей и обладали широким каталистическим спектром;

4. в ходе дальнейшей эволюции сохранялись структуры, способствующие резкому повышению активности и селективности действия каталистических групп;

5. следующим моментом, описывающим химические и биологические линии эволюции, является развитие полимерных структур типа РНК и ДНК, каталических матриц, на которых осуществляется воспроизведение себе подобных структур. (372. 21)

БЕЛКИ. При определенных условиях на планете жизнь возникала «оживлением» добелковых, допротеиновых форм химического вещества. Химический процесс самосовершенствующихся в самоорганизующихся «оживающих» аминокислот привел к появлению органических веществ, а вслед за этим к превращению неживого белкового вещества в живой организм. Тепловой фон, создаваемый под воздействием красного и инфракрасного излучения Солнца, воздействовал на химические процессы усложнения – возникновения живых белков – «первоначал» и основ жизни. Прямые и обратные связи белков со средой обеспечивали эволюционные сдвиги в их структуре. «Жизнь – способ существования белковых тел». (Ф. Энгельс)

Молекула белка состоит из сотни аминокислотных «остатков» в виде 10 в 130 степени различных последовательностей 20 типов аминокислот. Простым (цельным, не составным) считается то, что неразложимо на части, на элементы. Но имеется ли в природе что-то простое, и так ли «просты» самые простейшие? Такой (простейший) организм как кишечная палочка (вид бактерии) через каждые 20 минут «разделяется» надвое и производит белок со скоростью 1000 молекул в секунду. Молекула белка состоит приблизительно из 1000 аминокислот, определенным образом располагающихся в пространстве молекулярной конструкции. Бактерия перерабатывает не менее 1000 битов информации в секунду, «берет» нужный ей строительный материал из окружающей среды.

Диапазон физико – географических сред, в которых могли появиться на Земле первые живые организмы, достаточно велик – от наземных условий с восстановительной или нейтральной атмосферой через прибрежную, приливно – отливную зону с ее теплыми водами «первичных» океанов до относительно глубоководных горячих гидро терм. Биологи – эволюционисты исходят из идеи самопроизвольного возникновения «живого» химического вещества на первобытной Земле. Они предполагают, что истоки жизни возникали в неустойчивом, сложном по химическому составу, киселеобразном растворе («бульоне») разнородного неорганического материала, где образуются сложные углеводородные молекулы, из которых в ходе их преобразования возникают простейшие организмы. (Следов, «остатков» первичного «бульона» не обнаружено.) В наше время на дне океана, в районе разломов, где из недр планеты выбрасывается раскаленная магма, на глубине тысяч метров обнаружены микроорганизмы. Выясняется влияние магмы Земли на появление химических веществ, склонных к цепным реакциям, прямым и обратным связям.

Мировая наука не отвергает концепцию А.И. Опарина, что при определенных условиях в водной среде создались благоприятные условия для образования углеродистых соединений. Водная оболочка органических молекул отделяла их от окружающего раствора. При этом разнообразные молекулы объединялись или просто перемешивались, образуя особые комплексы. Их усложнение привело к появлению коацерватов – мельчайших коллоидальных соединений – капсул, обогащаемых растворенными веществами. Эти комплексы были способны поглощать другие молекулы и в том числе катализаторы. Коацерваты могли увеличиваться (расти), дробиться на части (размножаться), осуществлять обмен молекулами со средой. Далее проявил себя естественный отбор. Коацерваты послужили исходной матрицей для последующего образования белковых соединений клетки. В 1953 г. биохимики С. Миллер и Г. Юри доказали, что один из кирпичиков жизни – аминокислоты могут быть получены путем пропускания электрического разряда через воду, в которой растворены газы «первобытной» атмосферы Земли (метан, аммиак и водород). В 2003 г. были повторены эти опыты и получены те же результаты. Таким образом, научная теория зарождения жизни на Земле отводит разряду молний основополагающую роль в преобразовании косного вещества в «живое» вещество. При пропускании коротких импульсов электрического тока в оболочке (мембране) бактерий появляются поры, через которые внутрь бактерий могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции живого.

Процесс возникновения и развития жизни проходил на основе объективных физико-химических законов. Предположительно выделяют следующие этапы:

1. синтез низкомолекулярных органических соединений из газов первичной атмосферы планеты;

2. полимеризация мономеров с образованием цепей белков и нуклеиновых кислот;

3. образование фазово-обособленных систем органических веществ, отделенных от внешней среды мембранами;

4. возникновение простейших клеток, обладающих свойствами живого, репродуктивным аппаратом, гарантирующим передачу дочерним клеткам химических и метаболических свойств родительских клеток.

Три первых этапа химической предбиологической эволюции сменяются четвертым – биологическим. Жизнь, согласно сегодняшним представлениям, возникает как следствие самоорганизации и усложнения материи. На предбиологическом этапе возникает углерод, способный вступать в соединения с самим собой. Образуются молекулы – базовые химические компоненты жизни: протеины – аминокислоты (белки) как составные части будущей клетки и нуклеиновые кислоты, содержащие в себе программу жизни и передающие генетическую информацию из поколения в поколение. Концепция эволюции биосферы на планете Земля включает этапы: 1) восстановительный, когда гетерографы накапливают органические соединений в водах первичного океана. 2) слабоокислительный – появление фотосинтеза и атмосферы. 3) появление организмов с кислородным дыханием.

Первоначальное молекулярное устройство клеток было простым, сходным с короткими белками без спиральных доменов как у термофилов. (Термофилы существуют в кратерах вулканов, в гейзерах, кипящих под давлением в несколько атмосфер и при температуре 180 градусов по Цельсию.) В наше время половина живых клеток на Земле – это клетки бактерий – живого «углерода».

КЛЕТКА – живая система «биологических» молекул, в которой идет сложный процесс самоорганизации химического (неживого «живого») вещества и аминокислот. Система клетки несравненно сложнее предбиологических образований. Она – симбиоз сосуществования органического и неорганического вещества, в ней локализуется синтез органических соединений. Она защищается от влияния окружающей среды и непосредственно взаимодействует с ней, извлекая из нее все необходимые химические элементы для органического синтеза. Зарождение жизни – абиогенез – опирается на две константы. Первая исходит из того, что клетка – элементарный живой организм, способный к самостоятельной жизнедеятельности. Вторая заключается в признании наличия базовой первоначальной биосферы – одноклеточных организмов самых разных видов и подвидов, у которых возникает существенный для жизни информационный фактор – раздражимость, саморегуляция и взаимодействие между организмами, организмами и средой. Колонии одноклеточных организмов при всем видовом разнообразии возникли с единым генетическим кодом 3 млрд. лет назад.

Предполагается, что все живые организмы происходят от одной единственной формы жизни, от которой они в той или иной степени унаследовали ряд признаков.

В «ничтожном» пространстве клетки скрыты основные характеристики живого: ресурсы наследственной информации, возможность структурной и функциональной самоорганизации, неуемная «жажда» активности, размножения и распространения. Сущность работы живой клетки сводится к механизму превращения химической формы движения материи в биологическую форму. В клетке одновременно осуществляются сотни и тысячи химических преобразований. Клетки состоят из одних и тех же химических элементов, которые образуют полисахариды, липиды, протеины, нуклеиновые кислоты и прочие важнейшие биовещества. Во всех клетках идут процессы с участием органелл. В клетках на атомарном уровне физические механизмы превращают энергию внешней среды в полезную для жизни работу. У всех клеток единый язык генетического кода. Ядро клетки хранит информацию о строении всего организма. Неопровержимым доказательством единства жизни служат сходные функции различных организмов, вызванные одними последовательностями аминокислот в протеинах, а также порядком нуклеотидов в нуклеиновых кислотах. Клетка – живая система, присущая растительному и животному мирам. Открытием клетки выявилось единство всего живого. 1 млрд. лет назад произошло разделение организмов на растения и животных по структуре и росту клеток.

Примитивные и недифференцированные клетки флуктационно отличались друг от друга. В них появились триггеры – биологические агенты, запускающие биолюменинсцентную реакцию. Продолжается изучение активаторов реакций в клетке. «Живые» органические молекулы производят как бы постоянное квантово – механическое «измерение» своего непосредственного будущего (в долях секунды) – своих ближайших (по времени) взаимодействий со всеми пространственными соседями. Но этого мига оказывалось вполне достаточно: за многие миллионы лет эволюции биологические системы сумели «надстроить» над этим простейшим молекулярным уровнем квантовых взаимодействий с «будущим» такую сложную и разветвленную систему других более высоких уровней организации живой материи, что это «измерение будущего» приобрело макроскопические размеры. В клетке идут процессы волновых коммуникаций. Открыт лизосом – он в клетке отвечает за разрушение и обновление ее состава.

Самопроизвольное зарождение жизни на планете Земля ознаменовалось возникновением клеточной организации – протокариот (микроорганизмов, приспособленных к самым разнообразным условиям существования), живущих первоначально на основе брожения и ассимиляции энергий абиогенных органических соединений. Им предшествовали вирусы – «простейшие» белковые, среди них возникли переходные виды от вещества к «существу». Вирусы – микроорганизмы, являющиеся и в наше время хозяевами на планете Земля. Они образуют биопленки – консорциумы, где вирусы ведут себя иначе, чем вне консорциумов. Поведение всех членов биопленки – единой генетической системы коллективного реагирования – результат эволюции. (Грибница высших грибов – комплекс биопленок в почве, без которых микроорганизмы не могут существовать.) До сих пор ученые не могут решить: вирусы – это живые существа или неживые объекты. Лауреат Нобелевской премии Уанделл Мередит Стенли отмечал, что в клетке вирус ведет себя как живое существо, а вне клетки он мертв как камень. Вирусы не обладают собственным обменом веществ, имеют очень ограниченное число ферментов. Для размножения они используют обмен веществ в клетке, ее ферменты и энергию. Вирусы ведут себя как внутриклеточные паразиты и не могут размножаться вне клеток тех организмов, в которых паразитируют. На молекулярном уровне фундаментальная роль в саморегуляции живого принадлежит регуляторным пептидам. Как микроорганизмы вирусы представляют собой фрагменты РНК и ДНК в белковой оболочке. Между крупными вирусами и бактериями находится промежуточное звено – каменные бактерии овоидной и призматической формы размером 0,2 – 0,5 микрон. Они покрыты каменной оболочкой карбона-апатита, обеспечивающей защиту от неблагоприятного влияния среды обитания. Эти бактерии «ответственны», например, за коррозию металлов.

Гигантский шаг на пути эволюции природы был связан с появлением основных биохимических процессов жизнедеятельности – фотосинтеза, дыхания, образования клеточной организации. Эти фундаментальные новшества, появившиеся еще на ранних этапах эволюции, оказались настолько удачными, что в основных чертах сохранились на всем протяжении последующего развития органического мира. Простейшая протоклетка питалась готовой органикой среды. Ее мембрана росла за счет включения подходящих молекул из внешней среды. В ходе эволюции структурно сложные виды не замещают более простые, а «вырастают» из них и «надстраиваются» над ними. Современная биота планеты Земля в одном синхронном срезе имеет весь спектр сложности организации Живого – от прокариотов до человека. Живой организм состоит из макромолекул – атомных компонентов, связанных между собой в длинные цепи. Свойства их зависят от характера «цепи» и от взаимодействий молекул друг с другом. Органоиды состоят из макромолекул и образуют ткани живых организмов. Макромир существует на основе микромира и не может от него обособиться.

А.Д. Королев в современной картине мира выделяет место виртуальной форме жизни. Он пишет, что виртуальная форма жизни не локализована в пространстве, не воспринимается, но определяет будущее организма. Она определяет цели экспансии, делает общение между организмами возможным, и сама актуализируется только при взаимодействии организмов друг с другом. Латентная форма жизни в отличие от виртуальной при достижении порога чувствительности потенциально доступна для восприятия. Она не определяет цель, а служит лишь для ее достижения. Восприятие копий не ведет к актуализации латентной формы жизни, поэтому особое внимание следует уделять непосредственному общению с природой и людьми. (201. 108) Виртуальная форма жизни опирается на такие активные «начала» как ферменты.

ФЕРМЕНТ. ЕГО ВИРТУАЛЬНОСТЬ КАК ПОСРЕДНИКА. Биохимики изучают ферменты – посредников в химических реакциях как биокатализаторов (белков с большими и сложными молекулами), ускоряющих химические реакции в организме. Иногда одна молекула фермента «способна» вызвать химические превращения тысяч молекул в секунду. Предполагают, что биологический катализатор действует как направляющая сила изменений. Живые клетки улавливают, сохраняют и передают энергию, заключенную в молекулах аденозантрафосфата (АТР), которые служат главным переносчиком химической энергии в клетках всех живых организмов. Клетка использует химическую энергию для процессов роста и биосинтеза своих компонентов, осматического переноса питательных веществ через мембрану клетки, а также механической работы сократительного и двигательного аппаратов. Биокатализ (ферментативный катализ) определяет жизнь на субклеточном (молекулярном) уровне.

Созидание и разрушение веществ в живой клетке протекают в строгой последовательности с помощью фермента, у которого активна не вся белковая молекула, а только центральный участок – коэнзим, ответственный за присоединение (связывание) субстрата и его превращения, а также регуляторные участки, расположенные по всей молекуле фермента и регулирующие его активность. Фермент «позволяет» атому в молекуле перейти из одного положения в другое и сразу готов проделать это с другой молекулой. Он имеет запас нужных ему атомов и возможность избавляться от ненужных атомов. В химической реакции фермент переносит атом водорода в своей ячейке («ящике»), высвобождает атом водорода в одной ячейке, а в другой связывает атомы. Фермент – белок, взаимодействующий с определенной молекулой клетки и «заставляющий» ее вступить в определенную химическую реакцию. Он влияет по очереди на множество молекул (расщепляя или соединяя 500 000 молекул в секунду). Фермент обслуживает сборку атомов внутри молекул. Он может ускорить реакцию в тысячи раз, и отдельная молекула фермента за секунду «обрабатывает» несколько тысяч молекул субстрата. Особенностью ферментов является организация ими «коллективных» действий. Ферментные комплексы напоминают завод, в каждом цехе которого протекают процессы, являющиеся частями единой технологии. Протеины перемещают химическое вещество в нужное место в нужное время. Каждый фермент регулирует определенную химическую реакцию благодаря определенной конфигурации своей молекулы и соответствия своего активного центра структуре субстрата. Он «распознает» только один определенный тип связи и ответственен за него.

Назад Дальше